UNIVERSITY OF POONCH RAWALAKOT AJK

Faculty of Basic & Applied Sciences

Semester BS(1st)

Subject: Environmental Science Course Code: GEN-3102

Course Structure: Lectures: 2 Lab:1 Credit Hours: 3(2+1)

Prerequisites: Environmental Chemistry Course Instructor: Sadaf Jamshad

Course Outline:

• The human environment; the lithosphere, biosphere and hydrosphere; the nature and composition of natural waters

- Pollution: definition, classification and impact on habitats; Air pollution: Sources and effect of various pollutants (inorganic, organic), control, remediation; Photochemical smog; Smog; Acid rain: Theory of acid rain; Adverse effects of acid rains; Chlorofluorocarbons and its effects; Water pollution: Major sources of water pollution its impact; Prevention, control remediation; Heavy metal pollution; Tanneries; Hospital waste; Treatments of sewage, sludge, and polluted waters; Soil pollution: major sources of soil pollution and its impact; Prevention, control remediation; Noise pollution.
- Ozone layer: Formation; Mechanism of depletion; Effects of ozone depletion
- Greenhouse effect: causes, impacts.

Lab:

Examination of water for

- Total dissolved solids.
- pH and Conductance.
- Alkalanity.
- Hardness of water
- Determination of phosphates and sulphates

Recommended Books

- Newman, E.I. 2001. Applied Ecology.Blackwell Science. UK
- Mooney, H.A. and Saugier, B. 2000. Terrestrial Global Productivity. Academic Press, UK.
- Eugene, E.D. and Smith, B.F. 2000. Environmental Science: A study of interrelationships. McGraw Hill. USA.
- French, H. 2000. Vanishing Borders: Protecting the Planet in the Age of Globalization. W.W. Norton and Company, NY.
- Hall, C.A.S. and Perez, C.L. 2000. Quantifying Sustainable Development. Academic Press, UK.
- Bazzaz, F.A. 2004. Plants in changing environments: Linking physiological, population, and community ecology. Cambridge Univ. Press.
- Bush, M.B. 1997. Ecology of a changing planet. Prentice Hall, UK.

- Marsh, M.W. and Grossa Jr., J.M. 1996 Environmental geography: Science, land use, and earth systems. John Wiley and Sons.
- Lambers, H., T. L. Pons and F. Stuart. 2008. Plant Phyiological Ecology

Course Objectives:

- To understand and provide updated knowledge of environmental problems
- To provide a basic introduction sustainable environmental management.

•

COURSE BREAKUP DETAIL

Weeks	Lecture		
VVCCKS	No.	Topic of Lectures	Activity
	1	The human environment	Class
Week 1	2	the lithosphere, biosphere and hydrosphere	Class
		Examination of water for Total dissolved solids	Practical
	1	the nature and composition of natural waters	Class
Week 2	2	Pollution: definition, classification and impact on habitats	Class
WEEK 2		Examination of water for Total dissolved solids (performance) +	
		Lab Report	Practical
	1	Air pollution: Sources and effect of various inorganic pollutants	Class
Week 3	2	Air pollution: Sources and effect of various organic pollutants	Class
		Examination of water for pH	Practical
	1	Control and remediation of air pollution	Class
Week 4	2	Photochemical smog	Class
		Examination of water for pH (performance) + Lab Report	Practical
	1	Smog	Class
Week 5	2	Theory of acid rain	Class
		Examination of water for Conductance	Practical
	1	Adverse effects of acid rains	Class
Week 6	2	Chlorofluorocarbons and its effects	Class
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Examination of water for Conductance (performance) + Lab	
		Report	Practical
Week 7	1	Water pollution: Major sources of water pollution and its impact	Class

	2	Water pollution: Prevention, control remediation	Class
		Examination of water for Alkalinity	Practical
	1	Heavy metal pollution & Tanneries	Class
Week 8	2	Examination of water for Alkalanity (performance) + Lab Report	Practical
•		MID TERM EXAM	
	1	Hospital waste	Class
Week 9	2	Treatments of sewage, sludge, and polluted waters	Class
		Examination of water for Hardness of water	Practical
	1	Soil pollution: major sources of soil pollution and its impact	Class
Week 10	2	Soil pollution: Prevention, control remediation	Class
WEEK 10		Examination of water for Hardness of water (performance) +	
		Lab Report	Practical
	1	Noise pollution	Class
Week 11	2	Noise pollution (Contin)	Class
		Examination of water for Determination of phosphates	Practical
	1	Ozone layer: Formation	Class
Week 12	2	Ozone layer: Formation (Contin)	Class
WCCK 12		Examination of water for Determination of phosphates	
		(performance) + Lab Report	Practical
	1	Ozone layer: Mechanism of depletion	Class
Week 13	2	Ozone layer: Mechanism of depletion (Contin)	Class
		Examination of water for Determination of sulphates	Practical
	1	Ozone layer: Effects of ozone depletion	Class
Week 14	2	Ozone layer: Effects of ozone depletion (Contin)	Class
WCCR 14		Examination of water for Determination of sulphates	
		(Performance) + Lab Report	Practical
	1	Greenhouse effect: causes	Class
Week 15	2	Greenhouse effect: causes (Contin)	Class
		Practical revision	Class
	1	Greenhouse effect: impacts	Class
Week 16	2	Greenhouse effect: impacts (Contin)	Class
		Practical revision	Practical

	1	Presentation	Class
Week 17	2	Presentation	Class
		Practical revision	Practical
	1	Presentation	Class
Week 18	2	Presentation	Class
		Practical revision	Practical
Week 19		Terminal Exams	

Signature of Teacher: Chair

Course Title	Analytical Chemistry	
Course Code	Course Code CHM-4302	
Credit hrs.	3(2-1)	
Class	BS	Semester: BS 3 rd
Course Instructor	Amna Khatoon	
Learning Objectives To provide students the basic knowledge of Analytical Chemimportance and applications.		wledge of Analytical Chemistry and its
	Introduction to Analytical Chemistry; Precision, Accuracy, Signal-to-noise ratio, Limits of detection, Errors; Measuring apparatus, Sampling; Expression of quantities and concentrations (Molarity, Normality, Molality, ppm and ppt solutions, percent solutions (w/v, v/w, w/w and v/v) and use of primary and secondary standards; Basic approach to equilibrium. Acid-base, complexometric and redox titrations, gravimetric analysis. Practical: Calibration of glassware used for volumetric analysis. Use of analytical balance and calculation of standard deviation. Constructing a calibration curve from a given analytical data using spread sheet software. Calculation of variance, mean, median, coefficient of variance of the data. Determination of hardness of water using EDTA, Determination of chloride in water sample.	
Suggested Readings/Reference Book	and Crouch. 2. "Analytical Chemistry: An In Laurie D. D. Kasper. "Princip Douglas A. 3. Vogels, s Text Book of Quan	Chemistry" by Skoog, West, Holler atroduction" by Gary Holmes and bles of Instrumental Analysis" by attitutive Inorganic Analysis by J. Language Book Society and Longman.

Signature of Course Instructor: Chairperson:	Signature of Course Instructor:	Chairperson:
--	---------------------------------	--------------

Detailed Course Breakup

Programme	BS 3 rd Semester	_		
Semester	3 rd Semester	3 rd Semester		
CourseTitle	Analytical Chemist	ry		
CourseCode	CHM-4302	Credit hrs.	3(2-1)	
CourseInstructor	Amna Khatoon			
No.of weeks	19			

COURSEBREAKUP

Weeks	Topic of Lecture	Activity
1 st	Introduction to Analytical Chemistry	
	Quantitative and Qualitative analysis	Lectures
	Practical: Lab safety rules, personal and instrument safety and lab	
	safety symbols (pictorial diagram)	
2 nd	Chemical analysis, classical methods (volumetric and gravimetric)	
	Introduction to instrumental methods of analysis	Lectures &
	Practical: Preparation of stock and diluted solution	Assignment#1
3 rd	Brief introduction to optical methods	
	Brief introduction to electroanalytical methods	Lectures
	Practical: Calibration of glassware (pipette, burette and flask) used	
	for volumetric analysis.	
4 th	Brief introduction to separation methods	
	The steps and Applications of a chemical analysis.	Lectures
	Practical: Calibration of glassware (pipette, burette and flask) used	
	for volumetric analysis.	
5 th	Error in a chemical analysis, Systematic error, types and Sources of	
	systematic error, Estimation of systematic error	Lectures
	Random error, Precision, difference between Accuracy and	
	precision,	
	Quiz1	Quiz#1
6 th	Mean, median, mode, variance, coefficient of variance	
	Continue Practice examples of standard deviation, Variance	Lectures

•	·	
	Practical: Use of analytical balance.	
7 th	Limit of detection, signal to noise ratio,	
	Measuring apparatus, and their uses in chemical analysis	Lectures
	Practical: Use of analytical balance.	
8 th	Sampling	
	Practical: Calculation of variance, mean, median, coefficient of	Lectures & Mid
	variance of the data.	Term Exams
	Midterm Exams	
	Expression of quantities and concentrations (molarity, normality	
9 th	and molality,	Lectures
	ppm and ppt solutions	
	Practical: Calculation of variance, mean, median, coefficient of	
	variance of the data.	
	Percent solutions (w/v, v/w, w/w and v/v)	Lectures
	practice examples of Percent solutions	
10 th	Practical: Calculation of standard deviation.	
	Use of primary and secondary standards	Lectures
11 th	Solution, solubilty, saturated, unsaturated, super saturated solution	&
	Practical: Constructing a calibration curve from a given analytical	Assignment
	data usings pread sheet software.	#2
	Basic approach to equilibrium	Lectures
12 th	Continue Basic approach to equilibrium	
	Practical: Constructing acalibration curve from a given analytical	
	data usings preadsheet software.	
	Quiz#2	Quiz#2
13 th	Titration, titant, titrand, and its types	& Lectures
	Practical: Lab Quiz	
	Indicator and its uses	Lectures
14 th	Acid-base titration	

	Practical: Determination of hardness of water using EDTA	
15 th	Complexometric Titration	Lectures
	Continue Complexometric,	
	Practical: Determination of hardness of water using EDTA	
	Redox titration	
16 th	Continue redox titration,	Lectures
	Practical: Determination of chloride in water sample	
	Gravimetric analysis	Lectures
17 th	Continue gravimetricanalysis and its applications	Lectures
	Practical: Determination of chloride in water sample	
18 th	Presentations	Presentations
19 th	TerminalExams	Terminal
		Exams

Signature of Course Instructor:	Chairperson

Course Title	Physical Chemistry	
Course Code	CHM 4301	
Credit Hours	3(2-1)	
Learning objectives	To understand the basics of physical chemistry and its different	
	branches	
Contents	Theory	
	Quantum chemistry, Solids, Liquids, Gases, Electrochemistry,	
	Kinetics, Surface chemistry, Solutions, Thermodynamics	
	Practical	
	1) Determination of viscosity and parachor values	
	2) Determination of melting and boiling points by boiling	
	point elevation and freezing point depression methods	
	3) Determination of heat of neutralization	
	4) Determination of heat of solution by solubility method	
	5) Determination of refractive index and molar refractivity	
Suggested reading	1.Physical Chemistry by B.S Bahl	
	2.Complete Physical Chemistry by Y.Sharma	
	3.Modern Physical Chemistry by Haq Nawaz Bhatti	

Teacher Sig. Mehrosh Islam

Chairman Sig. -----

Programme	BS		
Semester	3 rd		
Course Title	Physical Chemistry		
Course Code	CHM-4301	Credit Hours	3(2-1)
No of week	19		
Course Instructor	Mehrosh Islam		

Detail of Lectures /Activity

Weeks	Lectures	Lecture topic	Activity	
Ist	Lecture	Introduction to quantum mechanics, Bohr model and its	Lectures and	
		defects, De Broglie relation	practical	
	Lecture	Classical mechanics and its failure, Dual nature of matter		
	Practical	Introduction to lab equipment		
2 nd	lecture	Heisenberg uncertainty principle and its limitations,	Lectures and	
		Atomic orbitals	practical	
	Lecture	Quantum numbers, Electronic configuration, Paulis		
		exclusion principle		
	Practical	Solutions Preparation		
3 rd	Lecture	Gen. Characteristics of liquids, Surface tension,	Lectures and	
		Parachore, Rheochore, Refractive index	practical	
	Lecture	Specific and molar refraction, Optical activity, Dipole		
		moment,		
	practical	Use of viscometer for viscocity measurements		
4 th	Lecture	Gen. Characteristics of solids, Types, Isotropy,	Lectures and	
		Anisotropy	practical	
	Lecture	Habbit of crystal, Crystal lattice, Crystal system		
	Practical	Determination of Parachor values using viscometer		
5 th	Lecture	Characteristics of gases ,Gas laws,	Lectures and	
	Lecture	Molecular velocities Ideal and real gases.	practical	
	Practical	Determination of molecular weight of compound by		
		freezing point depression method		
6 th	Lecture	Derivation of kinetic gas equation, Molecular collision,	Lectures and	
		Collision diameter,	practical	
	Lecture	Liquefaction of gases Mean free path, Wander wal eq. for		
		gases		
	Practical	Use of refractometer for finding refractive index		
7^{th}	Lecture	Introduction to thermodynamics, System,	Lectures and	
		Surrounding, State function,	practical	

	Lecture	Internal energy, Extensive intensive properties, First law,	
		Enthaply	
	practical	Measurement of molecular weight by elevation of boiling	
		point method	
8 th	Lecture	Free energy change, Enthalpy change, Cp and Cv	Lectures and
	Lecture	2 nd law, Change in free energy and eq. constant K	MIDS
		Mid Term Exams	
9 th	Lecture	Intro to Kinetics, rate ,rate law, Velocity constant,	Lectures
		elementary and complex reactions	AND
	Lecture	Order and molecularity. Zero ist and second order	Practical
		reactions	
	Practical	Determination of Heat of neutralization of acid and base	
10 th	Lecture	Derivation of kinetic equation for ist and second order	Lectures and
		reactions	Practical
	Lecture	Methods of determining rate of reaction. Arhenius	-
		equation, Different theories of reaction rate	
	Practical	Determination of Heat of solution by solubility method	-
11 th	Lecture	Basic Electrochemistry, Conductors insulators	Lectures and
		Electrochemical cells and types	Practical
	Lecture	Electrolytic and electronic dissociation, EMF	
	Practical	Determination of Percentage composition viscometrically	
12 th	Lecture	Specific conductance and its measurement	Lectures and
	Lecture	Cell constant and its determination,	practicals
	Practical	Finding cell constant in lab	
13 th	Lecture	Ostwald dilution law	Lectures and
	Lecture	Introduction to solutions	practical
	Practical	Percentage composition using refractive index	
		measurements	
14 th	Lecture	Types of solutions Raoults Law	Lectures and
	Lecture	Ideal and non ideal solutions	practicals
	practical	Practicals revision	
15 th	Lecture	Colligative properties and their determination	Lectures and
	Lecture	Zeotropic and azeotropic mixtures	practicals
	practical	Practicals Revision	
16th	Lecture	An introduction to surface chemistry	Lectures and
	Lecture	Adsorption and absorption, physical and chemical	practicals
		adsorption	
	Practical	Revision of practicals	<u> </u>

17th	Lecture	Catalysis,types,Enzyme catalysis	Lectures and
	Lecture	Adsorption isotherms	practicals
	Practical	Lab quiz	
18th	Lecture	Class presentations	
	Lecture	Class presentations	
	Lecture	Class presentations	
19th		Terminal exams	Terminal
			exams

Teacher Sig. Mehrosh Islam	Chairman Sig.	
	0	

Faculty of Basic and Applied Sciences

Department of Chemistry

Course Title	Physical chemistry-I		
Course Code	CHM-5501		
Credit hrs.	4(3-1)		
Class	Bs 5 th Semester:Fall 2023		
No. of week	19		
Course	Rubob Mehmood		
instructor	Nubob Meninou		
Learning			
objectives	Students will be able to figure out the essential theoretical notions and		
	values prevailing the performance and stuffs of matter, including		
	thermodynamics, kinetics and quantum mechanics. Moreover, students		
	should advance the aptitude to analytically estimate experimental data,		
	interpret various spectroscopic techniques, and make connections between		
	molecular-level phenomena and macroscopic properties.		
Contents	Theory		
	1. Chemical Kinetics		
	Brief reference to the first and second order rate law, details of third		
	order rate law, half-life period and order of reaction, measurement of the		
	rate of chemical reaction, factors effecting the rate of chemical reaction,		
	Arrhenius theory, theories of reaction rates for unimolecular,		
	bimolecular and termolecular reactions, transition state theories,		
	comparison of collision and transition state theories, Complex reactions.		
	2. Chemical Thermodynamics First law of thermodynamics, reversibility and maximum work		
	First law of thermodynamics, reversibility and maximum work,		
	enthalpy, heat capacity. Joule Thomson effect, effect of temperature on change in enthalpy (Clausius-Claperon equation), second law of		
	thermodynamics, entropy and its calculations, dependence of free energy		
	on pressure and temperature, free energy relationship with equilibrium		
	constant for chemical reactions and other thermodynamic functions,		
	third law of thermodynamics, unattainability of absolute zero of		
	temperature.		
	3. Kinetic Theory of Gases		
	Ideal and real gases, equations of state for real gases (Beatte-Bridgeman		
	and Varial equation), Maxwell law of molecular velocities, calculations		
	of molecular velocities, Maxwell and Boltzman law of energy		
	distribution, molecular collisions, viscosity of gases and distribution.		
	4. Molecular Spectroscopy		
	Introduction to spectral Terms, Rotational, vibrational, Electronic		
	Spectroscopy.		

Practicals

Refractometry

- 1. To find out the refractive index of the given liquid and also find its molecular refractivity.
- 2. To calculate the composition of the liquid C which is a mixture of liquids A and B.

Polarimetry

- 1. To find out the specific and molecular rotation of the cane sugar polarimetrically.
- 2. Determination of concentration of optically active substances in solutions.

Colorimetry

- 1. To verify Beer's Law for solution of KMnO4 or K2Cr2O7 using colorimeter.
- 2. Determine the concentration of unknown solution by using colorimeter.

Suggested Readings/Ref erence books

- 1. Physical chemistry of BSc by Ghulam Rasool Chaudhary
- 2. Alberty, R.A and Silbey, R.J., "Physical Chemistry" John Wiley, New York, 1995.
- 3. Atkins, P.W, "Physical Chemistry" 5th Ed., W.H. Freeman & Company, New York, 1994.
- 4. Bahl, A. (1961). Essentials of physical chemistry. S. Chand Publishing.

Signature of Course Instructor:

α	•	
/ 'h	airperson	
\ . II 4	ali uci suli	

Course breakup for BS 5th

Course Title	Physical chemistry-I	
Course Code	CHM-5501	
Credit hrs.	4(3-1)	
Class	Bs 5 th Semester: Fall 2023	
No. of week	19	
Course instructor	Robab Mehmood	

Details of lecture/Activities

Weeks	Topic of lecture	Activity	
1 st	Brief reference to the first and second order rate law	Lectures	
	Details of third order rate law		
	Half-life of all orders and		
	Introduction to lab equipment and safety measures	Practical	
2 nd	Methods to find out order of reaction	Assignment	
	Measurement of the rate of chemical reaction	01/Lectures	
	Factors effecting the rate of chemical reaction		
	Preparation of Different solution	Practical	
3 rd	Arrhenius theory	Assignment	
	Numerical related to Arrhenius equation	#1	
	Theories of reaction rates for unimolecular (Collision theory)		
	To find out the refractive index of the given liquid and also find its	Practical	
	molecular refractivity		
4 th	Bimolecular reactions (Lindemann Theory)	Lectures	
	Transition state theories,		
	Comparison of collision and transition state theories		
	To find out the refractive index of the given liquid and	Practical	
	also find its molecular refractivity.		
5 th	Gen. Characteristics of solids, and Types.	Lectures	
	Isotropy, Anisotropy		
	Habit of crystal, Crystal lattice		
	To find out the refractive index of the given liquid and also find its	Practical	
	molecular refractivity.		
6 th	Crystal systems	Quiz #1	
	Isotropy, Anisotropy		
	System, Boundary. Internal energy		
	To calculate the composition of the liquid C which is a mixture of	Practical	
	liquids A and B.		
7 th	Extensive , intensive properties	Lectures	
	Surrounding, State function		
	First law, 2nd law of thermodynamics,		

	To calculate the composition of the liquid C which is a mixture of	Practical	
oth .	liquids A and B.		
8 th	Enthalpy. reversibility and maximum work	Mid Term	
	Heat conseils.	Exam	
	Heat capacity	Lectures	
	Joule Thomson effect		
	To calculate the composition of the liquid C which is a mixture of liquids A and B.	Practical	
9 th	Effect of temperature on change in enthalpy (Clausius-Claperon	Lectures	
9	equation)	Lectures	
	entropy and its calculations		
	Dependence of free energy on pressure and temperature.		
	To find out the specific and molecular rotation of the cane sugar	Practical	
	polarimetrically.	Fractical	
10 th	Free energy relationship with equilibrium constant for chemical	Lectures	
	reactions and other thermodynamic functions.		
	third law of thermodynamics w.r.t unattainability of absolute zero		
	Ideal and real gases,		
	To find out the specific and molecular rotation of the cane sugar	Practical	
	polarimetrically.		
	To verify Beer's Law for solution of KMnO4 or K2Cr2O7 using		
	colorimeter		
11 th	Equations of state for real gases (Beatte-Bridgeman and Varial	Quiz #2	
	equation)		
	Maxwell law of molecular velocities	Lectures	
	calculations of Root mean square velocity		
	To find out the specific and molecular rotation of the cane sugar	Practical	
	polarimetrically.		
12 th	calculations of mean velocity	Lectures	
	Calculation of average velocity		
	Maxwell and Boltzmann law of energy distribution		
	Determination of concentration of optically active substances in	Practical	
	solutions.		
13 th	Graphical explanation of Maxwell and Boltzmann law of energy	Lectures	
	distribution		
	Molecular collisions with types		
	Viscosity of gases		
	Determination of concentration of optically active substances in	Practical	
	solutions.		
14 th	Methods to find out viscosity of gases	Lectures	
	Distribution of gases		
	Introduction to Molecular spectroscopy		

	Determination of concentration of entirelly active substances in	Dractical
	Determination of concentration of optically active substances in	Practical
	solutions.	
15 th	Introduction to spectral Terms	Lectures
_		
	Introduction to spectral Terms (Continue)	
	Electronic Spectroscopy	
	To verify Beer's Law for solution of KMnO4 or K2Cr2O7 using	Practical
	colorimeter.	
16 th	Electronic Spectroscopy (Continue)	Lectures
	Vibrational Spectroscopic terms	
	Vibrational Spectroscopy (mathematical relations)	
	To verify Beer's Law for solution of KMnO4 or K2Cr2O7 using	Practical
	colorimeter.	
17 th	Rotational Spectroscopy introductory terms	Lectures
	Rigid and non-rigid rotors	
	Rigid and non-rigid rotors (Continue)	
	To verify Beer's Law for solution of KMnO4 or K ₂ Cr ₂ O ₇ using	Practical
	colorimeter (Performance).	
18 th	Presentations	Presentations
	Presentations	
-	Presentations	
	Determine the concentration of unknown solution by using	Practical
	colorimeter (Performance).	
19 th	Terminal exam	Terminal
		exam

Signature of Course Instructor:

Chairperson	

Faculty of Basic and Applied Sciences

Department of Chemistry

Course Title	Organic chemistry-l			
Course Code	CHM-5502			
Credit hrs.	4(3-1)			
Class	Bs 5 th Semester:Fall 2023			
No. of week	19			
Course	Amina Khurshid			
instructor				
Learning	This course introduces the basic concepts of GOC of organic Chemistry.			
objectives	Further, it focuses on the preparations and reactions of organic compounds.			
Contents	Theory			
	Atomic orbitals, hybrid orbitals and molecular orbitals. Organic structures inductive effect; resonance; mesomerism; hyper conjugation; hydrogen bond aromaticity. Ring strain and conformations. Structure-reactivity relationship: Changes in chemical reactivity with change in molecular structure in terms of acid strength. Reactive intermediates: Types, structure, stability, methods of generation reactivity. Introductory Stereochemistry:Historical background and significance; chirality and stereoisomerism; Classification and nomenclature of stereoismers. Drawing and interconversion of Fischer, Newman and Sawhorse projections. Chemistry of Hydrocarbons: Various strategies for the synthesis of hydrocarbons emphasis on modern trends; Characteristic reactions of hydrocarbons and their importance in synthetic organic chemistry. Organic Chemistry Laboratory-I			
	a) Functional Group Analysis of organic compounds.			
	b) Analysis of three component mixtures by solubility methods.			
	(5 mixtures at least)			
	c) Introduction to basic lab techniques: distillations, recrystallization, solvent			
	extraction; chromatography (PC, TLC).			
Suggested Readings/Ref erence books	Handrickson, J. B., Cram, D.J. and Hammond, G.S., Organic Chemsitry, 3rd Ed, MacGrawHill, Tokyo, 1970.2.Morrison, R.T., and Boyde, R.N., Organic Chemistry, 6th Ed. Prentice Hall, Englewood Cliffs, New Jersey, 1992.3.March, J., Advanced Organic			
	Chemistry.			

Signature of Course Instructorr:	Chairperson
----------------------------------	-------------

Course Title	Organic chemistry-I		
Course Code	CHM-5502		
Credit hrs.	4(3-1)		
Class	Bs 5 th Semester: Fall 2023		
Course Code	CHM-5502		
No. of week	19		
Course instructor	Amina Khurshid		

Details of lecture/Activities

Weeks	Topic of lecture	Activity
1 st	Introduction to organic chemistry	Lectures
	Atomic orbitals hybrid orbitals and molecular orbitals.	
	Organic compounds and inductive effect.	
	Functional group analysis of organic compounds.i.e Alcohol , Halide and carboxylic acid.	Practical
2 nd	Resonance and drawing of resonating structures and response hybrid of various compounds.	Assignment 01/Lectures
	Stability of resonating structures.	
	Mesomeric effect	
	Functional group analysis of aldehyde and keone	Practical
3 rd	+M effect, electron donating groups	Quiz#1/Lectu
	-M effect, electron withdrawing geoups	res
	of Benzene ring and mesomeric effect,+M effect order,-M effect order.	
	Functional group analysis of ester, phenol and amide.	Practical
4 th	Concept of hyperconjugation. Hyperconjugation in carbocation	Lectures
	Hyperconjugation in alkene, in free radical	
	Different contributing structures problems	
	Analysis of three components mixture by solubility method.	Practical
5 th	Concept of hydrogen bonding and various structures	Lectures
	Effect of hydrogen bonding on solubity and acidity.	
	Aromaticity intro aromatic ,anti aromatic and non aromatic	
	Analysis of three components mixture by solubility method.	Practical
6 th	Huckle's rule	Lectures
	Introduction of Ring strain	
	Ring strain and conformations	
	Functional group analysis of organic compounds.	Practical
7 th	Structure reactivity relationship:study of acid base strength on	Lectures
	various organic structures	
	Effect of acid base strength on chemical reactivity.	
	Effect of acid base strength on chemical reactivity.	7
	Introduction of Lab technique thin layer chromatography.	Practical
8 th	Mid Term Exam	Mid Term
		Exam
	Concept of weak acids and weak bases	Lectures

	Concept of Leaving group w.r.t acid	
	Application of TLC for separation or identification of compounds.	Practical
9 th	Concept of srong acids and strong bases, conjugate acid conjugate	Lectures
	base	
	Organic acids and bases]
	Scale of acidity and basicity]
	Introduction of solvent extraction technique.	Practical
10 th	Steriochemistry historical background and significance.	Lectures
	Steriochemistry historical background and significance	
	Chirality and sterioisomers of various structures	
	Isolation of plant pigments by solvent extraction.	Practical
11 th	Classification and nomenclature of sterioisomers.	Assignment
	Classification and nomenclature of sterioisomers.	#02/lectures
	Drawing and interconversion of Fisher projection	1
	Purification by recrystallization.	Practical
12 th	Drawing and interconversion of Fisher projection	Lectures
	Drawing and interconversion of Newman and Sawhorse projection.	
	Drawing and interconversion of Newman and Sawhorse projection]
	Purification by recrystallization.	Practical
13 th	Practice to check Types of sterioisomers.	Lectures
	Practice to check Types of sterioisomers.	
	Practice on nomenclature of sterioisomers.	
	Separation of organic compounds by distillation.	Practical
14 th	Practice on nomenclature of sterioisomers.	Lectures
	Chemistry of hydrocarbons: introduction of hydrocarbons.	
	Nomenclature of hydrocarbons.	
	Separation of organic compounds by distillation.	Practical
15 th	Nomenclature of hydrocarbons.	Lectures
	Synthesis of hydrocarbons (alkanes) and emphasis on various stages	
	Synthesis of hydrocarbons(alkanes) and emphasis on various stages	
	Distillation method.	Practical
16 th	Synthesis of hydrocarbons (alkenes) and emphasis on various stages	Lectures
	Synthesis of hydrocarbons (alkyne) and emphasis on various stages	
	Reactions of alkanes	
	Separation of plant pigments or to check the completion of reaction	Practical
	during synthesis by Paper chromatography.	
17 th	Reactions of alkenes	Lectures
	Reactions of alkenes	
	Reactions of alkynes and importances in organic synthesis.	
	Separation of plant pigments or to monitor the product formation	Practical
.1	during synthesis.	
18 th	Presentations	Presentations
19 th	Terminal exam	Terminal
		exam

Faculty of Basic and Applied Sciences

Department of Chemistry

Course Title	Inorganic chemistry I			
Course Code	CHM-5503			
Credit hrs.	4(3-1)			
Learning Objectives	This course introduces the concept of attainment of stability of atom. All Focuses on the bonding, Structure of molecule, it also serves to Familiarize the student with the different bonding theories of covalent bonding			
Contents	1. Theories of Covalent Bonding (Structure of Molecules) A brief history of concept of chemical bond. Nature and types of chemical bonding, Lewis concepts, ionic, covalent, coordinate covalent bond. VSEPR model followed by VB theory (Hybridization and Resonance concept) to explain the structure of molecules of various types. Molecular orbital approach as applied to diatomic and polyatomic molecules. Bonding in electron deficient compounds. Hydrogen bonding. Theories of metal bonds, conductors, semiconductors and insulators. Effect of temperature and impurities on conductivity. 2. Chemistry of Lanthanides and Actinides Elements Electronic structure, position in the periodic table, oxidation states, occurrence, extraction separation, General properties, complex formation, Lanthanide and Actinide contraction, Applications. Practicals 1. Separation of metal ions by paper chromatography and their identification with the help of locating agents and comparison of Rf values such as Cu ⁺² /Ni ⁺² , Al ⁺³ /Fe ⁺³ , Ca ⁺² /Ba ⁺² 2. Aqueous Acid-Base Titration Estimation of CO2. 3. Determine the % age purity of the Commercial sample of sodium chloride.			

Suggested Reference Material: Readings/Reference | James Huheey, E., "Inorganic Chemistry, Principles of Structure and **Book** Reactivity", 3rd. Ed., Cambridge, Harper International, London, 1983. • Lee J.D., "Concise Inorganic Chemistry", 5 th edition, Black Well Science, 1996. • James Huheey E., "Inorganic Chemistry, Principles of Structure and Reactivity", 3 rd. Ed. Cambridge, Harper International, London, 1983. • Machay K. M. and Machey R. A., "Introduction to modern Inorganic Chemistry", 3 rd Ed. International text book company London, 1981. • Green wood, "Chemistry of the elements", 2nd Ed., Jardan, Hill oxford, 1997. Practical Bassett J., "Vogel's text books of quantitative analysis", 4 th Ed., Longman Group Limited, 1978.

Signature of Course Instructorr:	Chairperson
----------------------------------	-------------

Course breakup for BS 5th

Programme		BS	BS	
Semester		5 th	5 th	
Course Title		Inorganic Chemisr	Inorganic Chemisry-I	
Course Code CHM-5503		Credit Hours	Credit Hours 4(3-1)	
No of week		19	19	
Course Instructor		Farrukh Zubair	Farrukh Zubair	

Details of lecture/Activities

Weeks	Topic of Lectures	Activity	
Week 1	A brief history of concept of chemical bond	Lectures	
	Nature and types of chemical bonding	Lectures Practical	
	 Lewis concepts 		
	• Separation of metal ion by paper		
	Chromatography and their identification with		
	the help of locating agents and comparison of		
	Rf values		
Week 2	Ionic bond		
	Covalent bond		
	 Coordinate bond 	Lectures	
	 Separation of metal ions by paper chromatography and their identification with the help of locating agents and comparison of Rf values 	Practical	
Week 3	• Introduction of VSEPR Theory	Lectures	
	• Examples of Molecular shapes	Assiginment#1	
	 Structures of different molecules 		
	 Separation of metal ions by paper chromatography and their identification with the help of locating agents and comparison of Rf values 	Practical	
Week 4	Concept of hybridization	Lacturas	
	Concept of resonance with examples	Lectures	

	Introduction of VBT	Practical
	• Estimation of pair of metal ions Cu ⁺² /Ni ⁺²	
Week 5	 Structures of molecules of different types Introduction of MOT Explanation of MOT Estimation of pair of metal ion Al⁺³/Fe⁺³ 	Lectures Quiz # 1
		Practical
Week 6	 Molecular orbital approach as applied to diatomic molecule 	Lectures
	Molecular orbital approach as applied to polyatomic molecules	
	 Energy diagrams of different molecules Estimation of pair of metal ions Ca⁺²/Ba⁺² 	Practical
Week 7	 Introduction of Electron deficient compound Bonding in electron deficient compounds Hydrogen bonding Estimation of CO2. 	Lectures Practical
Week 8	Introduction g metal bondTheories of metal bondConductors	Lectures
	MID TERM EXAM	MID TERM EXAM
Week 9	Semi-ConductorsInsulatorEffects of temperature on conductivity	Lectures
	• Estimation of CO2.	Practical
Week 10	 Effect of impurities on conductivity Introduction of lanthanides Introduction of actinides 	Lectures
	Acid base titration	Practical
Week 11	 Electronic structures of Lanthanides elements Electronic structures of Actinides Position in periodic table and oxidation states Acid base titration 	Lectures
	Acid base titration	Practical
Week 12	 Occurrence of Lanthanides Occurrence of Actinides Extraction of Lanthanides Acid base titration 	Lectures
		Practical
Week 13	 Extraction of actinides Separation of Lanthanides Separation of Actinides 	Lectures
	Acid base titration	Practical

Week 14	 General properties of Lanthanides General properties of Actinides Complex formation of Lanthanides Acid base titration 	Lectures Practical
Week 15	 Complex formation of Actinides Lanthanide contraction Actinides contraction Revision Practicles 	Lectures Practical
Week 16	 Application of Actinides Application of Lanthanide Revision exercise of lanthanides and actinides elements Revision Practicles 	Lectures Practical
Week 17	Presentation	
Week 18	Presentation	
Week 19	Terminal Exam	Terminal Exam

Signature of Course Instructorr:

•	hai	rnerso	n	
•	лап		,,,	

Faculty of Basic and Applied Sciences

Department of Chemistry

Course Title	Biochemistry I	
Course Code	CHM-5504	
Credit hrs.	4(3-1)	
Learning Objectives	 To acquaint students with the metabolism of different biomolecules Students able to know about role of different biomolecules in energy formation 	
Contents	Theory	
	Carbohydrates metabolism: Digestion, absorption, and transport of sugars into cells, glycolysis, TCA cycle, Gluconeogenesis, glycogenesis, glycogenolysis. HMP pathway, uronic acid pathway.	
	Lipids Metabolism: Digestion, absorption, and transport of lipids, oxidation of saturated and unsaturated fatty acids, biosynthesis of fatty acids, triglycerides, phospholipids, steroids, bile acids, and ketone bodies.	
	Protein Metabolism: Digestion of proteins, absorption, and transport of amino acids to cells. Decarboxylation, deamination, transamination, metabolism of essential amino acids. Urea cycle, creatine and uric acid synthesis. Bioenergetics, Oxidative and Substrate level phosphorylation, electron transport chain, chemiosmotic theory.	
	Nucleic acid metabolism: Biosynthesis and catabolism of purines, pyrimidines, and their regulation.	
	Biochemistry Laboratory-I	
	1. Determination of the amount of reducing sugar in the biological fluids.	
	2. Estimation of non-reducing sugars.	
	3. Determination of saponification value of fats.	
	4. Determination of Iodine value of fats.	
	5. Determination of the acid value of fats.	
	6. Determination of Lactose in milk.	

Suggested Readings/Reference Book

- 1. D. Voet, J. G. Voet, C. W. Pratt, "Biochemistry", John Wiley & Sons, New York, 1999.
- 2. A. L. Lehninger, D. L. Nelson, M. M. Cox, "Principles of Biochemistry", 3rd Ed., WorthPublishers, New York, 2000.
- 3. G. Zubay, "Biochemistry", W. C. B. Publishers, Toronto, 1998.
- 4. L. Stryer, "Biochemistry" 5th Ed., W. H. Freeman & Co., 2002.

Practical

- 1. D. T. Plummer, "An Introduction to Practical Biochemistry", Tata Mc Graw-HillPublishing company Ltd. New Delhi, 1988.
- 2. G. Rajagopal, S. Ramakrishnan, "Practical Biochemistry for Medical Students", OrientLongman Ltd., Hyderabad, 1983.
- 3. S. P. Singh, "Manual of Biochemistry", CBS Publishers, New Delhi, 1988

Chairperson	

Course breakup for BS 5th

Programme		BS	
Semester		5 th	
Course Title		Biochemistry-I	
Course Code	CHM-5504	Credit Hours	4(3-1)
No of week		19	
Course Instructor		Summyia Khalid	

Details of lecture/Activities

Weeks	Topic of Lecture	Activity	
1 st	Digestion, absorption and transport of sugars into cells		
	Glycolysis		
	TCA cycle		
	1. Determination of the amount of reducing sugar in the biological fluids.	Practical demonstration	
2 nd	Gluconeogenesis		
	Glycogenesis,	-	
	Glycogenolysis	-	
	1. Determination of the amount of reducing sugar in the	Practical Performance	
	biological fluids.		
3rd	HMP pathway,	Assignment 1	
	HMP pathway,		
	Uronic acid pathway	_	
	2. Estimation of non-reducing sugars.	Practical demonstration	
4th	Uronic acid pathway,		
	Bioenergetics,	_	
	Bioenergetics,	Practical Performance	
	Estimation of non-reducing sugars.		
	Oxidative and Substrate level phosphorylation,	Quiz I	

5 th	Electron transport chain	
	Chemiosmosis theory	Practical demonstration
	3. Determination of saponification value of fats.	
6 th	Digestion, absorption and transport of lipids,	
	Digestion, absorption and transport of lipids,	
	Oxidation of saturated fatty acid	
	3. Determination of saponification value of fats.	Practical Performance
7 th	Oxidation of saturated fatty acid	
	Oxidation of unsaturated fatty acids,	
	Oxidation of unsaturated fatty acids,	
	4. Determination of Iodine value of fats.	Practical demonstration
8 th	Biosynthesis of fatty acids,	Mid term exam
	Biosynthesis of triglycerides	
	Biosynthesis of phospholipids	
	4. Determination of Iodine value of fats.	Practical Performance
9th	Biosynthesis of steroids	
	Biosynthesis of bile acids	
	Biosynthesis of ketone bodies.	
	5. Determination of the acid value of fats.	Practical demonstration
10th	Digestion of proteins, absorption and transport of amino acids	3
	to cells.	
	Decarboxylation,	
	Deamination	
	5. Determination of the acid value of fats	Practical Performance
	Transmination,	Quiz II
11 th	Anabolism of essential amino acids.	
	Anabolism of essential amino acids.	
	6. Determination of Lactose in milk.	Practical demonstration

12 th	Anabolism of essential amino acids.	
	Catabolism of essential amino acids.	
	Catabolism of essential amino acids.	
	6. Determination of Lactose in milk.	Practical Performance
13 th	Catabolism of essential amino acids.	
	Urea cycle	
	Creatine synthesis.	
	6. Determination of Lactose in milk.	
14 th	Uric acid synthesis.	Assignment II
	Biosynthesis purines	
	Catabolism of purines	
	6. Determination of Lactose in milk.	Practical Performance
15 th	Biosynthesis of pyrimidines	
	Catabolism of pyrimidines	
	Regulation of pyrimidines biosynthesis	
	Lab revision	
16 th	Regulation of pyrimidines biosynthesis	
	Regulation of purines biosynthesis	
	Regulation of purines biosynthesis	
	Lab quiz	
17 th and 18 th	Presentation and revision	
19 th	Terminal exam	

Signature of Course Instructor _	Chairperson
----------------------------------	-------------

PHYSICAL SECTION

UNIVERSITY OF POONCH RAWALAKOT AJK

Faculty of Basic & Applied Sciences

Subject: Chemical Kinetics Course Code: CHM-6701

Course Structure: Lectures: 3/week Credit Hours: 3

Prerequisites: Physical Chemistry Course Instructor: Mehrosh Islam

Learning objectives	To have a thorough understanding of different reaction types, Methods of studying		
E J	reaction rates, their Mechanisms, Factors affecting them.		
Contents	Theory		
	Higher order reactions, causes of higher order rarity, methods of studying reaction		
	kinetics, physical and chemical methods, potentiometric methods, conductometric		
	methods, Ostwald dilution method and differential methods, Guggensheins method,		
	Kinetics of parallel opposing and consecutive reactions, Steady state approximation,		
	Gas phase reactions, Reactions in solution phase, Conductometric, Dialatometric,		
	Spectrophotometric methods, Chain reactions of hydrogen and bromine, Fast reactions,		
	Plug flow techniques, Photochemical reactions.		
Suggested Reading	Essentials of Physical Chemistry by BS Bahl		
	2.Alberty, R.A and Silbey, R.J, 'Physical Chemistry' John Wiley, New York, 1995		
	3.Chemical kinetics and reaction dynamics by Santosh K.Upadhyay		
	4.Chemical kinetics James H Espenson		

5.Physical Chemistry 6 th edition IRA N. Levine

Schedule for Quizzes and Final Exam:

- Quizzes will be normally announced at least one day in advance, and may be given in lecture or in tutorial.
- Quizzes will usually be closed-book (some might be open-book) and will typically require about 10 minutes to complete.
- A student who misses a quiz for any reason will be assigned a score of zero for that quiz. There will be atleast two quizzes throughout the semester.
- Exams will be conducted on schedule announced by department.
- Midterm and terminal exam will be from the syllabus covered in the whole semester.
- The examinations will focus on understanding and applying the concepts taught in class and practiced in lab/tutorial exercises and assignments.

Grading Policy:

As per institution policy

Teaching Methodology:

Class room lectures on multimedia and whiteboard both, surprise quizzes can be at the start or end of lecture.

Attendance and Assignment Policy:

All students are expected to attend all lectures. Latecomers, coming in class after 10 minutes all be marked absent, must be on time.

Late assignment submission will result in negative marking. Copying will not be tolerated and will be dealt with very seriously.

Note:

Teacher reserves the right to change the lecture schedule, contents and assessment criteria based upon the class situation.

Detail of Lectures /Activity

Weeks	Lecture Number	Торіс	Activity
Ist	Lecture	Rate equations for ist second third	Lectures
		order reactions	
	T	Higher order reactions and their half	
	Lecture	life period	
		Numericals of Ist and second order	
	Lecture	rate equations	
2 nd	Lecture	Methods of studying reaction kinetics	Lectures
2	Lecture	Methods of studying feaction kinetics	Lectures
	Lecture	Physical methods	
	Lecture	Chemical method of rate	
3 rd	Lecture	Methods of studying order of reaction	Lectures
	Lecture	Ostwald isolation method of order	
	Lecture		
	Lecture	Rarity of higher order reactions	
4 th	Lecture	Differential and half life method of	Lectures
	Lecture	order	
		Introduction to some complex	
	Lecture	reactions	
		Kinetics of opposing reactions	
5 th	Lasture	Numericals of opposing passions	Lastumas
3	Lecture	Numericals of opposing reactions	Lectures
	Lecture	Consecutive reactions and kinetics	
	Lecture	Consecutive reactions and kinetics	

6 th	Lecture	Steady state Approximation	Lectures &
	Lecture	Parallel reactions and their kinetics	QUIZ
	Lecture	QUIZ	
7 th	Lecture	Spectrophotometry Beers law	Lectures
	Lecture	Spectrophotometric method of rate	
	Lecture	with examples	
		Conductometric Method of rate	
8 th	Lecture	Measurement of volume at constant	Lectures/MIDS
		pressue	
	Lecture	Measurement of pressure at constant	
		volume	
9 th	Lecture	Powel Plot method of rate	Lectures
	Lecture	Potentiometric method of rate	
	Lecture	Dilatometric method of rate	
10 th	Lecture	Arhenius equation	Lectures
	Lecture	Graphs and numericals	
	Lecture	An introduction to photochemistry	
12 th	Lecture	Hydrogen chlorine reaction	Lectures
	Lecture	mechanism	
	Lecture	An introduction to surface chemistry	
		Applications of Adsorption	
		Adsorption isotherms	
	1		

13 th	Lecture	Mechanism of Hydrogen Bromine	
		Reactions	Lectures
	_	Reactions in Solutions	2000000
	Lecture	Reactions in Solutions	
	Lecture		
14 th	Lecture	Ficks law and effect of solvent	Lectures
14	Lecture	Ticks law and criect of solvent	Lectures
	Lecture	Fast Reactions	
	Lecture	Relaxation methods to study Fast reactions	
15 th	Lecture	Flow methods of fast reactions	Lectures
	Lecture	continuous and stopped flow methods	QUIZ
	Lecture	QUIZ	
16 th	Lecture	Chain reactions	Lectures
	Lecture	Chain reactions (Branched chain)	
	Lecture	Kinetics of acetaldehyde	
17 th	Lecture	Numericals	Lectures
	Lecture	Gas phase reactions	
	Lecture	Unimolecular gas phase theory	
18th	Lecture	Presentations by students	Assignments
	Lecture	Presentations by students	and presentations
	Lecture	Presentations by students	presentations
19th	TERMINAL EXAM		Terminals

Teacher Sig. Mehrosh Islam

Chairman Sig. -----

Faculty of Basic and Applied Sciences Department of Chemistry

Course Title	Molecular Spectroscopy
Course Code	CHM-6704
Credit hrs.	3(3-0)
Learning Objectives	The students will acquire basic knowledge of the interaction of radiation with matter and will be able to use the quantum mechanics to understand molecular spectra. The students will recognize the relationship between molecular spectra and molecular properties
Contents	Spectroscopy, electromagnetic radiations, classification of spectroscopy, electromagnetic spectrum, Regions of electromagnetic spectrum, experimental techniques, microwave spectroscopy, rotation of linear system, rotation of rigid rotors, rotation of non rigid rotor, rotation of symmetric tops, rotation of asymmetric tops, kinetic energies of system, quantum mechanical treatment of linear system, symmetric top molecules and asymmetric tops, rotation of spectrum and selection rules for linear system, applications of microwave spectroscopy, ifra red spectroscopy, simple harmonic oscillator, selection rules for anhormonic oscillators, U.V. spectroscopy, electronic spectroscopy, absorption laws, instrumentation(U.V.), Frank condon principle
Suggested Readings/Reference Book	 Barrow, G. M. and Mc Graw- Hill, 1962. Introduction to Molecular Spectroscopy). London. Banwell, C.N., 1972. Fundamentals of Molecular Spectroscopy (2nd Ed.). Mc Graw-Hill, London.

Signature of Course Instructor

Chairperson

Course Breakup

Programme	BS	BS		
Semester	7 th	7 th		
Course Title	Molecular Spe	Molecular Spectroscopy		
Course Code	CHM-6704	CHM-6704 Credit hrs 3(3-0)		
No. of Weeks	19	19		
Course Instructor	Dr. Srosh Fazi	1		

Details of lectures / activities

Weeks	Topic of Lecture	Activity	
1 st	Spectroscopy	Lectures	
	Spectroscopy		
	Electromagnetic Radiations		
2 nd	Classification of Spectroscopy	Lectures &	
	Regions of Electromagnetic Spectrum	Assignments #1	
	Experimental Techniques		
3 rd	Experimental Techniques		
	Microwave Spectroscopy	Lectures	
	Rotation of Linear System		
4 th	Rotation of Rigid Rotors	Lectures	
	Rotation of Rigid Rotors		
	Rotation of Non-rigid Rotors		
5 th	Rotation of Non-rigid Rotors	Lectures	
	Rotation of Symmetric Tops		
	Quiz #1	Quiz #1	
6 th	Rotation of Asymmetric Tops	Lectures	
	Kinetic Energy of Systems		
	Quantum Mechanical Treatment of Linear System		
7 th	Quantum Mechanical Treatment of Symmetric &	Lectures	
	Asymmetric Tops		
	Rotation Spectrum & Selection Rules for Linear		
	System		
	Rotation Spectrum of Symmetric & Asymmetric Tops		
8 th	Mid Term Exam	Mid Term	
	Rotation Spectrum of Symmetric & Asymmetric Tops	Lectures	
	Applications of Microwave Spectroscopy	-	
9 th	Problems	Lectures	
	Problems		
	Ifra- Red spectroscopy, Vibrating Diatomic Molecule,	-	
10 th	Simple harmonic oscillator,	Lectures	
10	Selection rule for harmonic oscillator		
	Difference in energy levels		
11 th	Anharmonic oscillators	Lectures &	
	Selection rule for anharmonic oscillator		
	Coupling of rotation and vibration		
	Coupling of rotation and vibration	Lectures	

12 th Applications of IR		
	Problems	
13 th	Quiz # 2	Quiz # 2 &
	Problems	Lectures
	UV Spectroscopy / Electronic Spectroscopy	
14 th	UV Spectroscopy / Electronic Spectroscopy	Lectures
	UV Spectroscopy / Electronic Spectroscopy	
	Absorption laws	
15 th	Absorption laws	Lectures
	Absorption laws	
	Instrumentation	
16 th	Instrumentation	Lectures
Frank Condon Principles		
	Frank Condon Principles	
17 th	Applications and Problem	Lectures
Problems		
	Problems	
18 th	Presentations	Presentations
19 th	Terminal Exam	Terminal Exam

Signature of Course Instructor

Chairperson

UNIVERSITY OF POONCH RAWALAKOT

Department of Chemistry

Session Fall - 2023

BS 7th

Subject: Statistical Mechanics	Course Code: CHM-6707
Course Structure: Lectures: 3/week	Credit Hours: 3 (3-0)
Semester: 7th	Course Instructor: Dr. Faiza Rehman

Learning Objectives:

Students will be able to learn and understand about basic concepts of Statistical Mechanics with demonstration and mechanisms of Statistical reactions.

Course Content:

Introduction to Statistical Mechanics, Historical background, Probability, Various Systems, Ensembles, Concept of states, Distribution of energy, Maxwell Boltzmann Statistics, MBS of independent particles, Partition function Derivations and determination of independent particles, Statistical thermodynamics, Correlation of partition and thermodynamic functions, Applications to chemical equilibrium, Applications to chemical kinetics, Fermi Dirac and Bose Einstein statistics

Text/Reference Books:

- 1. Introduction to Statistical Mechanics by Robert Swendsen
- 2. Topics in Statistical Mechanics by Brian Cowan
- 3. Statistical Mechanics by Werner Krauth

Teacher Sig	Chairman Sig

Programme		BS		
Semester		7th		
Course Title		Statistical Mechanics		
Course Code CHM-6707		Credit Hours	3(3-0)	
No of week		16		
Total no. of lectures		48		
Course Instructor		Dr. Faiza Rehman		

Course log with tentative dates:

Detail of Lectures /Activity Week	Lecture topic	Activity
1 st	Introduction to Statistical Mechanics	Discussion
	Basic Terms	
	Laws of statistical Mechanics	
2 nd	Historical background	
	How statistical mechanics started	
	Role of scientists for statistical mechanics study	
3 rd	Probability	Assignment 1
	Types of probability	
	Laws of probability	
4 th	Various Systems	Group discussion
	Macro system	
	Micro system	
5 th	Ensembles	Quiz 1
	Types	
	Examples	
6 th	Concept of states	
	Type of states	
	Examples of ststes	-
7 th	Distribution of energy	Think pair share

	Simple atoms energy distribution	activity	
	Complex atoms energy distribution		
8 th	Maxwell Boltzmann Statistics	Discussion	
	Continue		
	Continue		
9 th	MBS of independent particles	Group discussion	
	Examples		
	Numericals		
10 th	Partition function		
	continue		
	continue		
11 th	Derivation of partition function	Discussion	
	Continue		
	determination of independent particles		

12 th	Statistical thermodynamics	Quiz 2
	Background	
	Basic laws	
13 th	Correlation of partition functions	Assignment 2
	Correlation of thermodynamic functions	

	Examples	
14 th	Applications to chemical equilibrium Continue	
	Continue	
15 th	Applications to chemical kinetics	Think pair share activity
	Continue Continue	
16 th	Fermi Dirac statistics	
	Continue Continue	
17 th	Bose Einstein statistics	
	Continue	
	Continue	
18 th	Presentation	
19 th	Terminal Examination	
	TERMINAL EXAMINATION	

Instructor signature......Chairman Sig. ------

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences Department of Chemistry

Course Title	Physical Chemistry Lab III		
Course Code	CHM-6715		
Credit hrs.	3(0-3)		
Contents	 Determination of specific rate constant for the saponification of ethyl acetate conductometrically. Determination of Equilibrium constant for the reversible reaction. Determination of heat of solution of oxalic acid by solubility method using Van't Hoff equation. Acid Base conductometric titration Obtain a spectral absorption curve of a given substance using a spectrophotometer and also find the wave length of maximum absorption. Verify Beer's law for given solution, also measure the unknown concentration. 		
Suggested Readings/Reference Book	 Sing, A., "Advanced experimental physical chemistry" 1st Ed., Campus Book international, New Delhi, 2005. Findlay, A.and Kitchner, J.A., "Practical physical Chemistry" Longman, Green and Co, 1976. Shoemaker, D.P. and Garland, C., "Experiments in physical chemistry" McGraw Hill, New York. 		

Signature of Course Instructor

Chairperson

Course Breakup

Programme	BS			
Semester	7 th			
Course Title	Physical Cher	Physical Chemistry Lab III		
Course Code	CHM-6715	Credit hrs	3(0-3)	
No. of Weeks	19	19		
Course Instructor	Dr. Srosh Fazi	1		

Details of lectures / activities

Weeks	Topic of Lecture	Activity
1 st	Determination of specific rate constant for the saponification of ethyl acetate conductometrically.	Theory
2 nd	Determination of specific rate constant for the saponification of ethyl acetate conductometrically.	Performance
3 rd	Determination of Equilibrium constant for the reversible reaction.	Theory
4 th	Determination of Equilibrium constant for the reversible reaction.	Performance
5 th	Determination of heat of solution of oxalic acid by solubility method using Van't Hoff equation.	Theory
6 th	Determination of heat of solution of oxalic acid by solubility method using Van't Hoff equation.	Performance
7 th	Acid Base Conductometric titration	Theory
8 th	No Practical due to Midterm Exam	-
9 th	Acid Base Conductometric titration	Performance
10 th	Obtain a spectral absorption curve of a given substance using a spectrophotometer and also find the wave length of maximum absorption.	Theory
11 th	Obtain a spectral absorption curve of a given substance using a spectrophotometer and also find the wave length of maximum absorption.	Performance
12 th	Obtain a spectral absorption curve of a given substance using a spectrophotometer and also find the wave length of maximum absorption.	Theory
13 th	Obtain a spectral absorption curve of a given substance using a spectrophotometer and also find the wave length of maximum absorption.	Performance
14 th	Verify Beer's law for given solution, also measure the unknown concentration.	Theory
15 th	Verify Beer's law for given solution, also measure the unknown concentration.	Performance
16 to 18th	Revision	
19 th	Terminal Exams	

Signature of Course Instructor

Chairperson

INORGANIC SECTION

UNIVERSITY OF POONCH RAWALAKOT AJK

Faculty of Basic & Applied Sciences

Session 2023

Subject: Environmental chemistry Course Code: CHM-6717

Course Structure: Lectures: 3: Credit Hours: 3

Prerequisites: Environmental Chemistry Course Instructor: Farakh Zubair

Course Outline:

Introduction to Environmental Chemistry

The human environment, the litho, bio and hydrosphere's, the nature and composition of natural waters, water pollution, chemistry of soil, composition of the atmosphere, oxides of carbon, sulphur and nitrogen in air pollution, atmospheric monitoring, instrumental methods of environmental chemistry.

Reference Material:

- Bockris R., McMillan, "Environmental Chemistry", USA, 1995
- . Manahan S.E.and Milled Grant Press, "Environmental Chemistry", 8 th Ed., CRC Press, New York, 2005.
- Mone and Mone, "Environmental Chemistry", Academic Press,
- Bokrin, "Environmental Chemistry", Ploniusm Press,
- De A.K., Willey Eastern, "Environmental Chemistry", New Dehli, 1990.
- Analysis, Mass and Everser, "Environmental Chemistry", International Text Book Co., Glasgow.
- Gilbert M., "Introduction to Environmental Science and Technology", John Wiley and Sons.
- Forstner U. and Wittman G., "Metal Pollution in Aquatic Environment", Springer Verlag, New York, 1989

Course Objectives:

This course introduces the Environmental chemistry. Also

Focuses on the components of environment, Discuss about air water and soil pollution.

Schedule for Quizzes and Final Exam:

- Quizzes will be normally announced at least one day in advance, and may be given in lecture
 or in tutorial. Quizzes will usually be closed-book (some might be open-book) and will
 typically require about 10 minutes to complete. A student who misses a quiz for any reason
 will be assigned a score of zero for that quiz. There will be at least two quizzes throughout
 the semester.
- Exams will be conducted on schedule announced by department.
- Midterm and terminal exam will be from the syllabus covered in the whole semester.
- The examinations will focus on understanding and applying the concepts taught in class and practiced in lab/tutorial exercises and assignments.

Grading Policy:

As per institution policy

Teaching Methodology:

Class room lectures on whiteboard both, surprise quizzes can be at the start or end of lecture.

Attendance and Assignment Policy:

All students are expected to attend all lectures. Latecomers, coming in class after 10 minutes all be marked absent, must be on time.

Late assignment submission will result in negative marking. Copying will not be tolerated and will be dealt with very seriously.

Note:

Teacher reserves the right to change the lecture schedule, contents and assessment criteria based upon the class situation.

DETAIL OF LECTURES

No of Weeks	Lecture No	Topic of Lectures	Activity
Week 1 Week 2	1 1 2 3	 Introduction to environmental chemistry Basics definitions of terms used in environmental chemistry Environmental segments Introduction of human environment Components of environment Types of environment 	Class Class Class
Week 3	1 2 3	LithosphereBiosphereHydrosphere	Class Class Class Assiginment#1
Week 4	1 2 3	The natureand composition of natural waterWater pollution	
Week 5	1 2 3	 Chemistry of soil Introduction of atmosphere Composition of atmosphere 	Quiz # 1
Week 6	1 2 3	Chemistry of soilSoil pollutionMajor sources	
Week 7	1 2 3	 Prevention of soil pollution Control of soil pollution Remediation of soil pollution 	
Week 8	1 2 3	 Oxides of carbon Sources Harmful effect of oxides of carbon 	
	1	MID TERM EXAM • Air pollution	

Week	12	Course of six collection	
	$\frac{2}{2}$	Sources of air pollution	
9	3	Effects of organic pollutants	
Week	1	 .Effect of inorganic pollutants 	
10	2	 Control of air pollution 	
	3	 Remediation of air pollution 	
		•	
Week	1	Oxides of sulphur in air pollution	
11	2	Sources of So _x	
	3	Harmful Effect of So _x	
Week	1	Oxides of Nitrogen	
12	2	Sources of No _x	
	3	Harmful effect of No	
Week	1	Photochemical smog	
13	2	Smog, Acid rain	
	3	Adverse effect of Acid rain	
	1	Atmospharia manitaria	_
Week	$\frac{1}{2}$	Atmospheric monitoringControl of oxides of carbon	
14	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	 Oxides of sulphur 	
14	3	Oxides of sulphur	
Week	1	Control of organic pollutant	
15	2	Continue	
10	3	• Contin	
		Continui	
		Control of Inorganic pollutant	
Week		• Continue	
16		• Continue	
Week		Control of Oxide of nitrogen	
17		Continue	
		Continue	
Week		Presentation	
18			
Week		Terminal Exams	
19			
		Terminal Exam	

Signature of Teacher:

Chairman:

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences Department of Chemistry

Course Title	Advanced Coordination Chemistry	
Course Code	CHM-6720	
Credit hrs.	3(3-0)	
Learning	Maximize coordination chemistry knowledge of students and advanced topics	
Objectives	related to the coordination chemistry	
Contents	Kinetics and mechanism of reactions in solution–labile and inert complexes – Ligand	
	displacement reactions in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions – trans effect – theory and applications. Electron transfer reactions – electron exchange reactions – complementary and non-complementary types –inner sphere and outer sphere processes – Application of Electron transfer reactions in inorganic complexes – isomerization and racemization reactions of complexes –Molecular rearrangement – reactions of four and six-coordinate complexes – Interconversion between stereoisomers. Reactions of coordinated ligands—Template effect and its application for the synthesis of Macrocyclic ligands – Unique properties, stability, factors that influence complex stability, determination of stability constants, applications of coordination compounds in various fields	
Suggested	1. Day, M.C and Selbin,J (1985): Theoretical Inorganic Chemistry, 2nd E	dition, Affilia
Readings/Refer	East West Press Pvt.Ltd.	
ence	2. Cotton, F. A and Wilkinson,G (2009): Advanced Inorganic Chemistry,	th Edition, A
Book	Wiley- Interscience Publication, John–Wiley &Sons, USA.	
	3. Huheey, J.E (1983): Inorganic Chemistry, 3rd Edition, Harper & Row pu	blisher, Singa

Course Breakup

Programme	BS		
Semester	7 th		
Course Title	Advanced Coo	ordination Chemi	istry
Course Code	CHM-6720	Credit hrs	3(3-0)
No. of Weeks	19		
Course Instructor	Dr. Khurram I	Liaqat	

Details of lectures / activities

Weeks	Topic of Lecture	Activity
1 st	Kinetics and mechanism of reactions in solution—labile and	Lectures
	inert complexes	
	Kinetics and mechanism of reactions in solution—labile and	
	inert complexes	
	Kinetics and mechanism of reactions in solution—labile and	
	inert complexes	
2 nd	Ligand displacement reactions in octahedral and square	Lectures &
	planar complexes	Assignments #1
	Ligand displacement reactions in octahedral and square	
	planar complexes	
_	acid hydrolysis, base hydrolysis and anation reactions	
3 rd	acid hydrolysis, base hydrolysis and anation reactions	
	trans effect – theory and applications	Lectures
	trans effect – theory and applications	
4 th	Electron transfer reactions – electron exchange reactions	Lectures
	Electron transfer reactions – electron exchange reactions	
	complementary and non-complementary types -inner	
	sphere and outer sphere processes	
5 th	complementary and non-complementary types -inner	Lectures
	sphere and outer sphere processes	
	Application of Electron transfer reactions in inorganic	
	complexes	
	Quiz #1	Quiz #1
6 th	Application of Electron transfer reactions in inorganic	Lectures
	complexes	
	Application of Electron transfer reactions in inorganic	
	complexes	
	isomerization and racemization reactions of	
	complexes	
7 th	isomerization and racemization reactions of	Lectures
	complexes	
	isomerization and racemization reactions of	
	complexes	
	isomerization and racemization reactions of	
	complexes	
8 th	Mid Term Exam	Mid Term
o		
	Molecular rearrangement – reactions of four and six- coordinate complexes	Lectures
	coordinate complexes	

	Molecular rearrangement – reactions of four and six-	
	coordinate complexes	
9 th	Molecular rearrangement – reactions of four and six-	Lectures
	coordinate complexes	
	Interconversion between stereoisomers	
	Interconversion between stereoisomers	
10 th	Interconversion between stereoisomers	Lectures
	Reactions of coordinated ligands	
	Reactions of coordinated ligands	
11 th	Reactions of coordinated ligands	Lectures &
	Template effect and its application for the synthesis of	Assignments #2
	Macrocyclic ligands	
	Template effect and its application for the synthesis of	
	Macrocyclic ligands	_
12 th	Template effect and its application for the synthesis of	Lectures
	Macrocyclic ligands	
	Unique properties	
41	Unique properties	0 : " 2 0
13 th	stability	Quiz # 2 &
	factors that influence complex stability	Lectures
_	factors that influence complex stability	
14 th	factors that influence complex stability	Lectures
	determination of stability constants	
	determination of stability constants	
15 th	applications of coordination compounds in various fields	Lectures
	Template effect and its application for the synthesis of	
	Macrocyclic ligands	
	Unique properties	
16 th	Unique properties	Lectures
	stability	
	factors that influence complex stability	
17 th	factors that influence complex stability	Lectures
	applications of coordination compounds in various fields	
	applications of coordination compounds in various fields	
18 th	Presentations	Presentations
19 th	Terminal Exam	Terminal Exam

UNIVERSITY OF POONCH RAWALAKOT AJK

Faculty of Basic & Applied Sciences

Session 2023

Subject: Introduction to Inorganic Reaction Course Code: CHM-6721

Mechanism

Course Structure: Lectures: 3 Lab: 0 Credit Hours: 3

<u>Prerequisites</u>: Inorganic Chemistry <u>Course Instructor</u>: Sadaf Jamshad

Course Outline:

 Introduction to Kinetics, rate of reaction and rate laws, Inert and Labile Complexes, classification of Mechanisms, Reaction Mechanisms of metal complexes e.g., substitution and oxidation-reduction (Redox) reactions.

Recommended Books

- Cotton F.A. and Wilkinson G., "Advanced Inorganic Chemistry", 5 th Ed, John Wiley & Sons, New York, 1988.
- Benson D., "Mechanisms of Inorganic Reactions in Solution", McGraw Hill, London, 1969
- Atwood J.D., "Inorganic and organometallic reaction mechanism", Brook/ Cole publishing company, California, 1985.

Course Objectives:

• The overall goal has been to provide students with a solid, compact introduction to the field of Kinetics and mechanisms of Inorganic reactions in homogeneous solution.

Schedule for Quizzes and Final Exam:

- Quizzes will be normally announced at least one day in advance, and may be given in lecture or in tutorial. Quizzes will usually be closed-book (some might be open-book) and will typically require about 10 minutes to complete. A student who misses a quiz for any reason will be assigned a score of zero for that quiz. There will be at least two quizzes throughout the semester.
- Exams will be conducted on schedule announced by department.
- Midterm and terminal exam will be from the syllabus covered in the whole semester.
- The examinations will focus on understanding and applying the concepts taught in class and practiced in lab/tutorial exercises and assignments.

Grading Policy:

• As per institution policy

Teaching Methodology:

• Classroom lectures on whiteboard both, surprise quizzes can be at the start or end of lecture.

Attendance and Assignment Policy:

- All students are expected to attend all lectures. Latecomers, coming in class after 10 minutes all be marked absent, must be on time.
- Late assignment submission will result in negative marking. Copying will not be tolerated and will be dealt with very seriously.

Note:

• Teacher reserves the right to change the lecture schedule, contents and assessment criteria based upon the class situation.

Detail of Lectures

Weeks	Lecture No.	Topic of Lectures	Activity
Week	1	Introduction of chemical kinetics	
1	2	Zero Order Reactions Lectures	Lectures
_	3	First order reactions	_
Wool	1	Cases of first order reactions	
Week 2	2	2 nd order Reaction	Lectures
2	3	Cases of 2 nd order reaction	-
XX71-	1	3 rd order reaction	
Week 3	2	Cases of 3 rd order reactions	Lectures
3	3	Cases of 3 rd order reaction (contin)	
Week	1	Labile and inert complexes	
4	2	Labile and inert complexes according to MOT	Lectures
	3	Labile and inert complexes according to VBT	
Week	1	Labile and Inert complexes according to CFT	
5	2	Labile and Inert complexes according to CFT (Contin)	Lectures
3	3	Quiz 1	_
Week	1	Steady state Approximation	
6	2	Steady state approximation case #1	Lectures
v	3	Steady state approximation case #2	_
Wool	1	Steady state approximation case #3	
Week 7	2	Types of substitution reaction	Lectures
	3	Associative and dissociative mechanism	
	1	MID TERM EXAM	
Week	2	Factors effecting associative and dissociative mechanism	Lectures
8		Factors effecting associative and dissociative mechanism	Lectures
	3	(Contin)	

Week	1	Difference between associative and dissociative mechanism	
9	2	Substation reactions in octahedral complexes	Lectures
	3	Anation reactions case 1	
Week	1	Hyrdolysis reactions	
10	2	Acid hydrolysis reactions	Lectures
	3	Acid catalyzed reactions	
Week	1	Acid catalyzed reactions case 1.1	
11	2	Base hydrolysis reaction	Lectures
	3	Factors effecting base hydrolysis reactions	
Week	1	Reactions proceeding without breaking M-L bond	
12	2	CaseII	Lectures
12	3	Substitions reactions in tetrahedral complexes	
Week	1	Quiz#2	
13	2	Substition reactions in square planar complexes	Lectures
	3	Trans effect and its applications	
Week	1	Trans effect theories	
14	2	ContinTrans effect theories	Lectures
-	3	Polarization theory	
Week	1	Applications of trans effect	
15	2	Redox reactions introduction	Lectures
	3	Mechanism of Redox reactions	
Week	1	Outer sphere Mechanism & inner sphere mechanism	
16	2	Complementary Reactions	Lectures
	3	Non-Complementary Reactions	
Week	1	Organo-Transition Reactions	
17	2	Synthesis of Organo-Transition compounds	Lectures
1/	3	Applications of organo-transition compounds	
Week	1	Presentation	Presentation
18	2	Presentation	1 resentation

	3	Presentation
Week 19		TERMINAL EXAM

Signature of Teacher:_	Chairman:
Dean:	

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences Department of Chemistry

Course Title	Inorganic Chemistry Lab III	
Course Code	CHM-6730	
Credit hrs.	3(0-3)	
Contents	Preparation of inorganic compounds	
	■ To prepare co-ordination compound of [Cu(NH ₃) ₄]SO ₄	
	■ To prepare a pure sample of FeSO ₄ (NH ₄) ₂ SO ₄ .6H ₂ O	
	Conductometric titrations	
	 To determine the strength of strong acid/weak acid by 	
	conductometric titration with strong base	
	 To determine the strength of strong acid/weak by 	
	conductometric titration with weak base	
	Potentiometric titrations	
	 To determine the concentration of a strong acid using 	
	potentiometric titration method.	

	■ To determine the concentration of a weak acid using		
	potentiometric titration method.		
	Gravimetry		
	Gravimetric determination of calcium as calcium oxalate		
	 Gravimetric determination of Iodide by using silver nitrate 		
Suggested	• Bassett J., "Vogel's text books of quantitative analysis", 4 th Ed.,		
Readings/Reference	Longman Group Limited, 1978.		
Book	• Harris D.C., "Quantitative Chemical Analysis", 5 th Edition, Freeman and Company, N.Y, 1999.		
	• Willard H.H., Merritt (Jr) L. L., Dean J.A., and Settle F.A.,		
	"Instrumental methods of Analysis", 7 th Ed., Wadsworth		
	Publishing Co., 1988		

Signature of Course Instructor

Chairperson

Course Breakup

Programme	BS			
Semester	7 th			
Course Title	Inorganic Ch	Inorganic Chemistry Lab III		
Course Code	CHM-6730	Credit hrs	3(0-3)	
No. of Weeks	19	19		
Course Instructor	Dr. Khurram I	Liaqat		_

Details of lectures / activities

Weeks	Topic of Lecture	Activity
1 st	To prepare co-ordination compound of [Cu(NH ₃) ₄]SO	Theory
2 nd	To prepare co-ordination compound of [Cu(NH ₃) ₄]SO.	Performance
3 rd	To prepare a pure sample of FeSO4(NH4)2SO4.6H2O	Theory
4 th	To prepare a pure sample of FeSO4(NH4)2SO4.6H2O	Performance
5 th	To determine the strength of strong acid/weak acid by conductometric titration with strong base	Theory
6 th	To determine the strength of strong acid/weak acid by conductometric titration with strong base	Performance
7 th	To determine the strength of strong acid/weak by conductometric titration with weak base	Theory
8 th	No Practical due to Midterm Exam	
9 th	To determine the strength of strong acid/weak by conductometric titration with weak base	Performance
10 th	To determine the concentration of a strong acid using potentiometric titration method.	Theory
11 th	To determine the concentration of a strong acid using potentiometric titration method.	Performance
12 th	To determine the concentration of a weak acid using potentiometric titration method.	Theory
13 th	To determine the concentration of a weak acid using potentiometric titration method.	Performance
14 th	Gravimetric determination of calcium as calcium oxalate	Theory
15 th	Gravimetric determination of calcium as calcium oxalate	Performance
16 th	Gravimetric determination of Iodide by using silver nitrate	
17 th	Gravimetric determination of Iodide by using silver nitrate	
18 th	Revision	
19 th	Examination	

Signature of Course Instructor

Chairperson

Organic section

Course Title	Name Reactions in Organic Chemistry		
Course Code	CHM-6734		
Credit hrs.	3(3-0)		
Class	BS Semester: Fall 2023		
Course Instructor	Dr. Naveed Iqbal		
Learning Objectives	The main objective of the course is to make students capable of learning about known mechanism and predicting unseen reaction mechanism,		
Contents	Detailed study of at least twenty name reactions including Arndt-Eistert Synthesis; Blaise Reaction; Bouvealt-Blanc Reaction; Hel-Volhard-Zelinsky reaction; Meerwein- Pondhof-Verley Oxidation; Mannich Reaction; Schotten- Baumen Reaction; Mitsonubo Coupling; Suzuki Coupling; Wittig reaction. Heck reaction, Pollazari reaction, Corey- House synthesis, Simmon-Smith reaction, Streacker synthesis, Micheal reaction, Williamson ether synthesis, Prins reaction, Wurts reaction, Robinson annelation reaction, Hinsberg reaction		
Suggested Readings/Reference Book	March, J., <i>Advanced Organic Chemistry</i> , 4th Ed., John Wiley & Sons, New York, 1992. Name Reactions and Reagents in Organic Synthesis 2nd Edition		

Signature of Course Instructor:	Chairperson	
Signature of Course instructor:	Chairderson	
Signature of Course instructor.	Champerson	

Detailed Course Breakup

Programme	BS 7 th Semester	BS 7 th Semester		
Semester	Fall-2023	Fall-2023		
Course Title	Name Reaction	s in Organic Chemis	try	
Course Code	CHM-4302	CHM-4302 Credit hrs. 3(2-1)		
Course Instructor	Dr. Naveed Iqba	Dr. Naveed Iqbal		
No. of week	19	19		

COURSE BREAKUP

Weeks	Topic of Lecture	Activity
1 st	Brief Introduction to Name Reactions	
	Arndt-Eistert Synthesis: Mechanism	Lectures
	Arndt-Eistert Synthesis Scope and Application	
2^{nd}	Blaise Reaction Theory and Applications	
	Bouvealt-Blanc Reaction Theory: Mechanism in detail	Lectures
	Bouvealt-Blanc Type Reaction to ketones and Aldehydes	
3 rd	Bouvealt-Blanc Type Reaction to alpha beta unsaturated	
	aldehydes and ketones	Lectures &
	Scope of and Application of the reaction	Assignment # 1
	Hel-Volhard-Zelinsky reaction. Theory and Mechanism	
	Hel-Volhard-Zelinsky reaction Scope and Applications	
	Hel-Volhard-Zelinsky reaction Scope and Applications	Lectures
	(Continued)	
	Schotten-Baumen Reaction: Theory and Mechanism	
5 th	Schotten-Baumen Reaction: Scope and Application	
	Meerwein-Pondhof-Verley Oxidation	Lectures
	Quiz 1	Quiz # 1
6 th	Oppenauer oxidation: Theory and Mechanism	
	Oppenauer oxidation: Scope and Application	Lectures
	Perkin reaction: Theory and Mechanism	
7 th	Perkin reaction: Scope and Application	
,	Peterson olefination: Theory and Mechanism	Lectures
	Peterson olefination: Application and Scope	
8 th	Mid term Exams	Mid Term Exams
	Mannich Reaction: Theory and Mechanism	
		Lectures
	Mannich Reaction, Scope and Application (Continued)	
	Mitsonubo Coupling Mechanism and theory	
9 th	Mitsonubo Coupling Application Continued	Lectures
<u> </u>		I

	Mitsonubo Coupling Scope Application Continued	
	Suzuki Coupling: mechanism	Lectures
10 th	Suzuki Coupling Scope and Application	
	Wittig reaction. Theory and Mechanism	

	Wittin magation Theory and Machanism	Lectures & Assignment#2
11 th	Wittig reaction. Theory and Mechanism	Assignment#2
	Wittig reaction. Theory and Application	
	Heck reaction;	Lectures
	Heck reaction (Continued)	
12 th	Pollazari reaction,	
	Corey-House synthesis	Quiz#2
	Corey-House synthesis Vs Wurtz reaction	&
	Simmon-Smith reaction	Lectures
13 th		
	Streacker synthesis	Lectures
	Williamson ether synthesis	
14 th	Micheal reaction Theory and mechanism	
	Micheal reaction, Scope and application	Lectures
15 th	Micheal reaction, Scope and application (Continued)	
	Prins reaction	
	Prins reaction (Continued)	
16 th	Wurts reaction Detailed theory and mechanism	Lectures
	Aldol Condensation	
	Aldol Condensation application: Robinson Annulation	
1.7th	Hinsberg reaction	Lectures
17 th	Three steps synthesis involving the above name reactions	
	Four step synthesis involving the above name reactions	Presentations
18 th	Presentations	
	Terminal Exams	Terminal Exams
19 th		

CHEMISTRY OF HETEROCYCLIC COMPOUNDS

Course Title	Chemistry of heterocyclic compounds	
Course code	CHM-6735	
Credit hrs.	3(3-0)	
Class	BS.7 th	
Course Instructor	Fazia Sher	
Learning Objectives	The overall goal has been to provide students with a solid, compact introduction	
	to the field of chemistry of heterocyclic compounds.	
Contents	Introduction., Nomenclature.' Synthesis and chemistry of upto six membered	
	heterocycles, containing one heteroatom like nitrogen ,oxygen and sulphur.	
Suggested	Young,D.W., Heterocyclic chemistry,	
Readings/Refrence	Palmer, M.H., Chemistry of Heterocyclic Compounds, Edward Arnold	
Book	Publishers, London, 1967.	

Signature of course Instructor:	Chairperson:
---------------------------------	--------------

Detailed Course Breakup

Programme	Bs.7 th		
Course Title	Chemistry of Heterocyclic compounds		
Course Code	CHM-6735		
Credit hrs.	3(3-0)		
No.of week	19		
Total No.of Lectures	48		
Course instructor	Fazia Sher		

Details of Lecture/activities

Weeks	Topic of lecture	
1 st	Introduction to Heterocyclic compounds	Lectures
	Classification of heterocyclic compound, homocylic and heterocylic	
	Aromatic heterocyclic compounds,non aromatic Heterocylic compounds	
2^{nd}	Classification on the basis of rings	Lectures
	Hantzsch-widman nomenclature for 3,4 membed ring containg one	
	heteroatom	
	Hantzsch-widman nomenclature for 5,6 membed ring containing one	
	heteroatom	
3^{rd}	Hantzsch-widman nomenclature for 5,6 membed ring containing more	Lectures
	than one heteroatom and priority ordre	&Assignment
	Introduction of furan, it's chemistry	#1
	Resonating structur of furan, synthesis of furan from pentose sugar with	
	mechanism	
4 th	Paal knoor synthesis of furan with mechanism	Lectures
	synthesis of furan from ethyl acetoacetate with mechanism	
	Electrophile substitution rxn. of furan, sulphonation, nitration with	
	mechanism	
5 th	Quiz #1	Quiz #1
	Introduction, structre and chemisty of pyrrole	Lectures
	Resonating structure of pyrrole, aromaticity of pyrrole	Lectures
6 th	Comparing Reactivity & basicity of pyrrole with 5 membered	Lectures
	heterocyclic compound	
	Paal knorr synthesis of pyrrole with mechanism	
	Synthesis of pyrrole from furan and acetylene with mechanism	
7^{th}	Synthesis of pyrrole from succinamide with mechanism	Lectures
	Electrophilic substitution rxn.of	
	pyrrole.sulphonation,nitration,halogenation with mechanism	
	Friedal craft alkylation, acylation of pyrrole mechanism	
8 th	Mid Term	Mid Term
	Synthesis of Quinoline	
	Reactions of Quinoline	
9 th	Introduction, structre and chemistry of Thiophene	Lectures
<u> </u>	resosonating structure of pyrrole, aromaticity of thiophene	

	Pall knorr synthesis of thiophene with mechanism	
10 th	Synthesis of Thiophene	Lectures
	Electrophilic substitution rxn,of thiophene,sulphonation,nitration,friedal	
	craft alkylation,acylation.	
	Reduction rxn.of thiophene with mechanism	
11 th	Diels elder rxn., diazo coupling and carbine rxn.of thiophene with	Lecture
	mechanism	
	Quiz#2	Quiz#2
	Resonating structure ,reactivity basicity of oxazole	Lecture
12 th	Robinson gabrial Synthesis of of oxazole with mechanism	Lectures
	Fisher oxazole synthesis with mechanism	
	Reactions of oxazole	
13 th	Introduction and chemistry of pyrimidine	Lectures
	Synthesis of pyrimidine from malonic esters(1,3-dicarbonyl	&Assignment#2
	compound)with mechanism	
	Synthesis of pyrimidine from alkyl pyrimidine mechanism	
14 th	Electrophilic substitution rxn.of pyrimidine,	Lectures
	Introduction and chemistry of pyridine	
	Resonating structure and properties and reactivity of pyridine	
15 th	Hantsch pyridine synthesis mechanism	Lectures
	Synthesis of pyridine from acetylene and HCN mechanism	
	Synthesis of pyridine from Aerolein mechanism	
16 th	Electrophilic substitution rxn. of pyridine	Lectures
	Introduction and chemistry of pyrazole	
	Resonating structure and reactivity of pyrazole	
17 th	Synthesis of pyrazole from pyrimidine mechanism, from nitrile imine	Lectures
	mechanism	
	Paal knoor synthesis mechanism of pyrazole,	
	Electrophilic substitution rxn.of pyrazole	
18 th	Presentations	Presentations
19 th	Terminal Exams	Terminal
		Exams

Signature of Teacher:	Chairman
Signature of Teacher:	(Hall Hall

Course Title	Organic Synthesis I			
Course Code	CHM-6736			
Credit hrs.	3(3-0)			
Class	BS	Semester: Fall 2023		
Course Instructor	Dr. Naveed Iqbal			
Learning Objectives	The aim of this course is to learn how to employ intermediates, protecting groups and rearrangements in designing organic synthesis.			
Contents	Reactive intermediates			
	Study of carbenes, nitrenes and benzynes with respect to their structure generation, important reactions and synthetic applications.			
	Introduction to Protecting groups			
	Introduction conditions and requirements of a good protecting group Protection of hydroxyl, Amino, Aldehyde and Carboxylic acid.			
	Molecular Rearrangements			
	Introduction to basic concepts; study of following rearrangements:			
	C-C: Wagner-Meerwein rearrangement; pinacol-pinacolone rearrangement; Favorskii rearrangement; benzillic acid rearrangement; benziline rearrangement.			
	C-N: Hoffmann rearrangement; Beckmann rearrangement; Curtius rearrangement; Losen rearrangement; Wolf rearrangement; Schmidt rearrangement.			
	C-O: Baeyer-Villiger rearrangement; dienone- phenol rearrangement; Dakin rearrangement; cumene-hydroperoxide rearrangement.			
Suggested				
Readings/Reference Book	March, J., <i>Advanced Organic Chemistry</i> , 4th Ed., John Wiley & Sons, New York, 1992. 2. Norman, R.O.C., and Coxon, J.M., <i>Principles of Organic Synthesis</i> , 3rd Ed.,			
	Blackie Academic and Professional, London, 1993.			
	3. Warren, S., <i>Organic Synthesis, The Disconnection Approach</i> , John Wiley & Sons, Chichester, 1992.			
	4. Finar, I.L., <i>Organic Chemistry</i> , 6th Ed., Vol. 1 & 2, Longman, London, 1973.			

Detailed Course Breakup

Programme	BS 7 th semester	BS 7 th semester		
Semester	Fall-2023	Fall-2023		
Course Title	Organic Synthes	Organic Synthesis I		
Course Code	CHM-6736	CHM-6736 Credit hrs. 3(3-0)		
Course Instructor	Naveed Iqbal			
No. of week	19	19		

COURSE BREAKUP

Weeks	Topic of Lecture	Activity
1 st	Brief Overview of Reactive intermediates:	
	Carbocations their structural properties briefly	Lectures
	Carbanions and Free radicals	
2^{nd}	Carbenes, Structure and States of Carbenes	
	Generation of Carbenes	Lectures
	Generation of Carbenes (Continued)	
3 rd	Reactions of Singlet Carbenes; Addition reaction	
	Reactions of Triplet Carbenes; Addition reaction	Lectures &
	Insertion reaction of Carbenes Singlet and Triplet	Assignment # 1
4 th	Proof of decomposition of alkyl carbenes	
	Reimer Tiemann Reaction	Lectures
	Simmon Smith Reaction	
5 th	Nitrenes: Structure and States	
	Generation of Nitrenes	Lectures
	Quiz 1	Quiz # 1
6 th	Generation of Nitrenes (Continued)	
	Reactions of Singlet and Triplet Nitrenes with alkanes	Lectures
	Reactions of Nitrenes with alkenes	
7 th	Reactions of Nitrenes with alkenes in innert solevents such as	T
	fluoro-alkanes.	Lectures
	Capturing of carbenes and nitrenes as a proof of their existence	_
8 th	Multistep synthesis reactions involving carbenes and nitrenes. Mid term Exams	Mid Term Exams
8		Wild Tellii Exallis
	Benzyne Structure and its generation	Lectures
	Selectivity in Benzyne formation: Functional groups effecting Benzyne formation	
	Selectivity in Benzyne formation: Functional groups effecting	
9 th	Benzyne formation (Continued)	Lectures

Ir	rotecting groups for Alcohols Protecting groups for Alcohols Protecting groups for Alcohols (Continued)	Lectures
	Protecting groups for Alcohols Protecting groups for Alcohols (Continued)	Lectures
10 th P	Protecting groups for Alcohols (Continued)	-
F		
P		ĺ
41-	Selective De-protection of Alcohols and phenols	Lectures &
11^{th} P_1	rotecting groups from amines	Assignment#2
P:	rotecting groups from amines (Continued)	
	rotecting groups for Aldehydes and ketones	Lectures
12 th P	rotecting groups for Aldehydes and ketones (Continued)	
P	rotecting groups for carboxylic acids	
13 th P	rotecting groups for carboxylic acids (Continued)	Quiz#2
$\overline{\mathbf{C}}$	Carbon-carbon rearrangement introduction: Wagner-Meerwein	&
A	and Pinacol rearrangement	Lectures
C	-O rearrangement: Baeyer-Villiger rearrangement.	
14 th D	pienone- phenol rearrangement	Lectures
D	Pakin rearrangement cumene-hydroperoxide rearrangement	
Pı	ractical Applications of C-N Rearrangements reactions.	
15 th B	Sezidine Rearrangement & Favorskii rearrangement	Lectures
P:	resentation	
F	avorskii rearrangement (Continued)	
be	enzillic acid rearrangement;	
16 th be	enzidine rearrangement.	Lectures
P	rotecting groups for alcohols	
	BDMS protecting group	Lactures
1/	Ioffmann and Lossen rearrangement;	Lectures
	Beckmann and rearrangement;	
18 th (Curtius rearrangement and Schmidt	Presentations
19 th	Terminal Exams	Terminal Exams

	10	Curtius rearrangement and Seminat		1 resentations
	19 th	Terminal Exams		Terminal Exar
Signature of Course Instructor:		Course Instructor:	Chairperson	

Biochemistry section

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences

Department of Chemistry

Course Title	Body organs' structure and physiology		
Course Code	CHM-6746		
Credit hrs.	3(3-0)		
Learning Objectives	 To acquaint students with the chemistry and Structure of body organ Students able to know about functions of different body organ 		
Contents	Theory Structure and function of liver, lungs, pancrease, kidney, heart, skeletal muscles and adipose tissues. Blood and other body fluids. General composition of blood, function of blood, blood plasma, plasma protein, composition and functions. Composition, development and functions of red blood cells, white blood cells and platelets. Haemoglobin, chemistry, properties, synthesis, functions and derivatives. Coagulation and clotting of blood. Blood pressure. Blood groups. Composition of urine, extra celluar fluids like cerebrospinal fluid.		
Suggested Readings/Reference Book	 Guyton and Hall, "Text Book of Biochemistry", Barcourt Brace Asia, 1998. M. Gerhard, W. H. Sinnons, "Principles of Medical Biochemistry", 2nd Ed., Mosby, N. Y., 2006. R. R. Seeley, D. Trent, "Anatomy and Physiology", 4th Ed., Mosby-Year Book, Inc., USA., 1998. J. W. Hole, "Essential of Human Anatomy Physiology", 4th Ed., Collin. H. Wheatley. Win. C. Brown Publishers, USA., 1992. Hoffbrand, "Essential Haematology" 5th Ed., 2006. 		

Instructor	Name:	Nahida	Faroog	Khan
iiisti actoi	itaiiic.	Hama	1 41 009	Milai

Signature of Teacher:	Nahida Farooq	Khan	Chairman"

[Course Breakup]

Programme	B.S		
Semester	7 th		
Course Title	Body organs' structure and physiology		
Course Code	CHM-6746	Credit hrs.	3(3-0)
Course Instructor	Nahida Farooq Khan		
No. of week	19 th		
Total No. of Lectures	48		
Course Instructor	Nahida Farooq Khan		

Details of lecture/Activities

Weeks	Topic of Lecture	Activity
1 st	Structure and function of liver	
	Structure and function of liver	
	Structure and function of liver	
2 nd	Structure and function of lungs	Assignment
	Structure and function of lungs	
	Structure and function of pancrease	
3 rd	Structure and function of pancrease	
	Structure and function of kidney	
	Structure and function of kidney	
4 th	Structure and function of kidney	
'	Structure and function of heart	
	Structure and function of heart	
5 th	Structure and function of heart	Quize
	Structure and function of skeletal muscles	
	Structure and function of skeletal muscles	
6 th	Structure and function of adipose tissues.	
	Structure and function of adipose tissues.	
	Structure and function of Blood and other body fluids.	
7 th	Structure and function of Blood and other body fluids.	
,	General composition of blood	
	General composition of blood	
8 th	Function of blood	Mid
	Composition and function of blood plasma	
	Composition and function of blood plasma	
9 th	Composition and function of plasma protein	
	Composition and function of plasma protein	
	Composition, development and functions of red blood cells	
10 th	Composition, development and functions of red blood	
10	cells	

	Composition, development and functions of white blood cells	
	Composition, development and functions of white blood cells	
st	Composition, development and functions of platelets	
11 st	Composition, development and functions of platelets	
	Haemoglobin, chemistry, properties, synthesis, functions and derivatives.	
12 nd	Haemoglobin, chemistry, properties, synthesis, functions and derivatives.	
	Haemoglobin, chemistry, properties, synthesis, functions and derivatives.	
	Haemoglobin, chemistry, properties, synthesis, functions and derivatives.	
13 rd	Coagulation and clotting of blood.	Assignment
13	Coagulation and clotting of blood.	
	Blood pressure]
14 th	Blood pressure	
14	Blood groups.	
	Blood groups.	
15 th	Composition of urine	Quiz
13	Composition of extra celluar fluids like cerebrospinal fluid.	
	Composition extra celluar fluids like cerebrospinal fluid.	
16 th	Composition, development and functions of platelets Continue Continue	
17 th	Presentation	
18 th	Presentation	
19 th	Terminal exams	

Signature	of Teacher:	Nahida Farooq Khaı	<u>n</u>	Chairman	:
8			_		1

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences

Department of Chemistry

Instructor Name: Summyia Khalid

Course Title	Biochemical Techniques	
Course Code	CHM-6747	
Credit hrs.	3(3-0)	
Learning Objectives	To acquaint students with the different techniques	
	Students able to know about functioning of different techniques	
Contents	Theory	
	Extraction, Fractions and purification of macromolecules	
	Homogenization, solubilization and concentration including ultrasonication, lyphilization, ultradecantation,	
	purification based on differential solubility techniques. Ion-exchange chromatography, Gel chromatography, Affinity chromatography. Paper and thin layer chromatography and HPLC. Electrophoresis:Paper and gel electrophoresis. SDS-PAGE, IEF,Two-dimensional electrophoresis. Capillary electrophoresis.	
	Centrifugation: Principle, preparative centrifugation. Application of density gradient and different centrifugation. Ultracentrifugation. Sedimentation equilibrium and sedimentation velocity methods applications of analytical centrifugation.	
	Tracer Techniques : Detection and measurement of radioactivity, Application of radioisotopes in biological system	
	UV & Visible spectroscopy: Basic principle, instrumentation and application	

Suggested	1. The tools of Biochemistry by Cooper	
Readings/Reference Book	2. Principles and techniques of practical Biochemistry by William Edward and Arnold	
	3. Qualitative problems in Biochemistry by Dawas	
	4. A Biologist's Physical chemistry by J. Gareth Morris	
	5. Protein purification, principle and practice by Robert. K. Scope	

[Course Breakup]

Programme	B.S		
Semester	7th		
Course Title	Biochemical Techniques		
Course Code	CHM-6747	Credit hrs.	3(3-0)
No. of weeks	19		
Total No. of Lectures	48		
Course Instructor	Summyia Khalid		

Details of lecture/Activities

Weeks	Topic of Lecture	Activity
st	Homogenization	
1	solubilization	
	Ultrasonication	
nd	Lyphilization	
2	ultradecantation	
	purification based on differential solubility techniques	
3 rd	Paper Electropheresis	
3	Gel electropheresis	
	SDS PAGE	
th	IEF	
4	IEF	
	2 D dimensional electropheresis	
5 th	2 D dimensional electropheresis	Quiz 01
5	Capillary electrophoresis	
	Capillary electrophoresis	
th	Paper chromatography	
6	thin layer chromatography	
	Column chromatography	
	Column chromatography	
7th	Gel chromatography	Assignment 01
/tn		
	Gel chromatography	
	or ememory	
	Ion-exchange chromatography	Mid term exam
8th		
Otti	Ion-exchange chromatography	
	Affinity chromatography	
	,	
	Affinity chromatography	

LIDI C	
HPLC	
HPLC	
Principle of centrifugation	
Analytical centrifugation	
Preparative centrifugation	
Density gradient	
Differential centrifugation	
Application of density gradient and different centrifugation.	
. Ultracentrifugation.	
Sedimentation equilibrium	
sedimentation velocity methods	
Applications of analytical centrifugation	Assignment 02
Tracer Techniques: Detection and measurement of radioactivity	
Detection and measurement of radioactivity	
Detection and measurement of radioactivity	Quiz 02
Detection and measurement of radioactivity	
Application of radioisotopes in biological system	
Application of radioisotopes in biological system	
Basic principle of UV & visible spectroscopy	
Instrumentation of UV & visible spectroscopy	
Instrumentation of UV & visible spectroscopy	
Application of UV & visible spectroscopy	
Application of UV & visible spectroscopy	
Presentation	
Presentation	
Terminal exam	
	Principle of centrifugation Analytical centrifugation Preparative centrifugation Density gradient Differential centrifugation Application of density gradient and different centrifugation Ultracentrifugation. Sedimentation equilibrium sedimentation velocity methods Applications of analytical centrifugation Tracer Techniques: Detection and measurement of radioactivity Detection and measurement of radioactivity Detection and measurement of radioactivity Application of radioisotopes in biological system Application of radioisotopes in biological system Basic principle of UV & visible spectroscopy Instrumentation of UV & visible spectroscopy Application of UV & visible spectroscopy Application of UV & visible spectroscopy Presentation Presentation

	e of Teacher:	Chairma	<u>ı </u>
17', 18 th	Terminal exam		
4 oth	Presentation		

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences

Department of Chemistry

Instructor Name: Summyia Khalid

Course Title	Molecular Biology	
Course Code	CHM-6748	
Credit hrs.	3(3-0)	
Learning Objectives	 To acquaint students with the chemistry and biology of macromolecules. Students able to know about reason of different genetic diseases 	
Contents	Theory DNA, the primary genetic material. Structure, replication in prokaryotes and comparison with eukaryotes. DNA sequencing. Chemical synthesis of polynucleotides. DNA repair and recombination. Control dogma of molecular biology. Different types of RNA and their role in protein synthesis. Transcription and its regulation. Lacoperon model Genetic code, post transcriptional processing, structure of transfer RNA. Protein synthesis inhibitor. Post translational modification. Plasmids, vector and cosmids. In virto mutagenesis: deletion, insertion and substitution. Recombination DNA and genetic diseases.	
Suggested Readings/Reference Book	 Griffiths, J. F. Anthony. et. al., "Modern genetic analysis: integrating genes and genomes", 2nd Ed., W. H. freeman, New York, 2002. G. Karp, "Cell and Molecular Biology: Concepts & Experiments", 3rd Ed., John Willey Sons, Inc., N.Y., 2002. F. Weaver, F. Robert F, "Molecular biology", Mc Graw-Hill, Boston, 1999. Garrett, H. Reginald, M. Charles, "Molecular aspects of cell biology", Saunders College Publishing, Fort Worth, 1995. T. Strachen, A. P. Read, "Human Molecular Genetics", 2nd Ed., BIOS Scientific Publications Ltd., 2000. 	

Signature of Teacher: Summyia Khalid Chairman"	
--	--

Course Breakup]

Programme	B.S		
Semester	7 th		
Course Title	Molecular Biology		
Course Code	CHM-6748	Credit hrs.	3(3-0)
Course Instructor	Summyia Khalid	•	
No. of week	19 th		
Total No. of Lectures	48		
Course Instructor	Summyia Khalid		

Details of lecture/Activities

Weeks	Topic of Lecture	Activity
1 st	DNA, the primary genetic material	
	DNA, the primary genetic material. Structure	
	Replication in prokaryotes	
2 nd	Replication in eukaryotes.	Assignment
	Replication in Linear Chromosomes	
	DNA sequencing.	
3 rd	Chemical synthesis of polynucleotides.	
	DNA repair	
	DNA recombination	
4 th	Control dogma of molecular biology.	
-	Different types of RNA and their role in protein synthesis.	
	Different types of RNA and their role in protein synthesis.	
5 th	Different types of RNA and their role in protein synthesis	Quize
	Transcription in prokaryotes	
	Transcription in Eukaryotes	
6 th	Regulation of Transcription	
	Post transcriptional processing	
	Recombination DNA	
7 th	Structure of transfer RNA	
'	Structure of transfer RNA	
	In vitro mutagenesis: deletion, insertion and substitution.	
8 th	In vitro mutagenesis: deletion, insertion and substitution.	Mid Exams
	Post translational modification	
	Post translational modification	
9 th	Translation in Prokaryotes	
	Translation in Eukaryotes	
	Post translational modification	
10 th	Protein synthesis inhibitor	
	RNA editing	
	RNA splicing	

11 st	Genetic code	
11	Wobble hypothesis	
	Protein Targeting	
12 nd	Protein Targeting	
12	Gene expression intro and Lac operon	
	Gene expression in Prokaryotes	
13 rd	Gene expression in Prokaryotes	Assignment
13	Gene expression in Eukaryotes	
	Gene expression in Eukaryotes	
14 th	Genetic Diseases/ Haemophilia	
14	Genetic Diseases/ sickle cell anaemia	
	Genetic Diseases/ cystic fibrosis	
15 th	Genetic Disease/ Thalasemia	Quiz
13	Genetic Disease/ Diabetes	
	Genetic Disease/cancer	
16 th	Vectors	
	Plasmids	
	Cosmid	
17 th and	Presentation/ Revision	
18 th		
19 th	Terminal exam	

Signature of Teacher: Summyia Khalid	Chairman:
--------------------------------------	-----------

University of Poonch Rawalakot

Faculty of Basic and Applied Sciences

Department of Chemistry

Instructor Name: Summyia Khalid

Course Title	Biochemistry Lab III		
Course Code	CHM-6748		
Credit hrs.	3(0-3)		
Learning Objectives	 ❖ To acquaint students about working of different instruments. ❖ Students able to know about protein fots and anywers 		
	Students able to know about protein, fats and enzymes		
Contents	 Estimation of protein by Kjaldahl's method. Determination of protein by spectrophotometrically. Estimation of creative and creation in different biofluids. Effect of pH, temperature, metal ions and time on enzyme activity and stability. Determination of oils and fats using soxhlet apparatus 		
Suggested Readings/Reference Book	 D. T. Plummer, "An Introduction to Practical Biochemistry", Tata Mc Graw-Hill Publishing company Ltd. New Delhi, 1988. G. Rajagopal, S. Ramakrishnan, "Practical Biochemistry for Medical Students", Orient Longman Ltd., Hyderabad, 1983. S. P. Singh, "Manual of Biochemistry", CBS Publishers, New Delhi, 1988. 4. A. L. Lehninger, D. L. Nelson, M. M. Cox, "Principles of Biochemistry", 3rd Ed., Worth Publishers, New York, 2000. G. Zubay, "Biochemistry", W. C. B. Publishers, Toronto, 1998 		

Signature of Teacher: <u>Summyia Khalid</u>	Chairman''
Dean:	

Course breakup for BS7th

Programme		BS	BS	
Semester		7 th	7 th	
Course Title		Biochemistry Lab II	I	
Course Code	CHM-6760	Credit Hours	3(0-3)	
No of week		19	19	
Total no. of lectures		48	48	
Course Instructor		Summyia Khalid	Summyia Khalid	

Details of lecture/Activities

Weeks	Topic of Lecture	Activity
1 st	General Lab Rules	
2 nd	Estimation of protein by Kjaldahl's method. (Demonstration)	
3 rd	Performance	
4 th	Determination of protein by spectrophotometrically. (Demonstration)	
5 th	Performance	Quiz
6 th	Estimation of creative and creation in different biofluids. (Demonstration)	
7 th	Performance	
8 th	Effect of pH, temperature on enzyme activity and stability. (Demonstration)	
9th	Performance	Mid term exam
10 th	Effect of metal ions and time on enzyme activity and stability. (Demonstration)	
11 th	Performance	
12 th	Determination of oils and fats using soxhlet apparatus. (Demonstration)	
13 th	Performance	Assignment
14 th	Revision	Quiz
15 th	Revision	
16 th 17 th 18 th	Revision	
19 th	Terminal exam	

Signature of teacher	Chairman